Cargando…
Classification of brain states that predicts future performance in visual tasks based on co-integration analysis of EEG data
Electroencephalogram (EEG) is a popular tool for studying brain activity. Numerous statistical techniques exist to enhance understanding of the complex dynamics underlying the EEG recordings. Inferring the functional network connectivity between EEG channels is of interest, and non-parametric infere...
Autores principales: | Levakova, Marie, Christensen, Jeppe Høy, Ditlevsen, Susanne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9709569/ https://www.ncbi.nlm.nih.gov/pubmed/36465674 http://dx.doi.org/10.1098/rsos.220621 |
Ejemplares similares
-
Adaptive integrate-and-fire model reproduces the dynamics of olfactory receptor neuron responses in a moth
por: Levakova, Marie, et al.
Publicado: (2019) -
Neural decoding with visual attention using sequential Monte Carlo for leaky integrate-and-fire neurons
por: Li, Kang, et al.
Publicado: (2019) -
Stochastic biomathematical models: with applications to neuronal modeling
por: Bachar, Mostafa, et al.
Publicado: (2013) -
Topological classification of integrable systems
por: Fomenko, A T
Publicado: (1991) -
EEG data collection using visual evoked, steady state visual evoked and motor image task, designed to brain computer interfaces (BCI) development
por: Fernandez-Fraga, S.M., et al.
Publicado: (2019)