Cargando…

Enhanced Charge Carrier Separation in WO(3)/BiVO(4) Photoanodes Achieved via Light Absorption in the BiVO(4) Layer

[Image: see text] Photoelectrochemical (PEC) water splitting converts solar light and water into oxygen and energy-rich hydrogen. WO(3)/BiVO(4) heterojunction photoanodes perform much better than the separate oxide components, though internal charge recombination undermines their PEC performance whe...

Descripción completa

Detalles Bibliográficos
Autores principales: Grigioni, Ivan, Polo, Annalisa, Dozzi, Maria Vittoria, Stamplecoskie, Kevin G., Jara, Danilo H., Kamat, Prashant V., Selli, Elena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9709765/
https://www.ncbi.nlm.nih.gov/pubmed/36465258
http://dx.doi.org/10.1021/acsaem.2c02597
_version_ 1784841229878427648
author Grigioni, Ivan
Polo, Annalisa
Dozzi, Maria Vittoria
Stamplecoskie, Kevin G.
Jara, Danilo H.
Kamat, Prashant V.
Selli, Elena
author_facet Grigioni, Ivan
Polo, Annalisa
Dozzi, Maria Vittoria
Stamplecoskie, Kevin G.
Jara, Danilo H.
Kamat, Prashant V.
Selli, Elena
author_sort Grigioni, Ivan
collection PubMed
description [Image: see text] Photoelectrochemical (PEC) water splitting converts solar light and water into oxygen and energy-rich hydrogen. WO(3)/BiVO(4) heterojunction photoanodes perform much better than the separate oxide components, though internal charge recombination undermines their PEC performance when both oxides absorb light. Here we exploit the BiVO(4) layer to sensitize WO(3) to visible light and shield it from direct photoexcitation to overcome this efficiency loss. PEC experiments and ultrafast transient absorption spectroscopy performed by frontside (through BiVO(4)) or backside (through WO(3)) irradiating photoanodes with different BiVO(4) layer thickness demonstrate that irradiation through BiVO(4) is beneficial for charge separation. Optimized electrodes irradiated through BiVO(4) show 40% higher photocurrent density compared to backside irradiation.
format Online
Article
Text
id pubmed-9709765
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-97097652022-12-01 Enhanced Charge Carrier Separation in WO(3)/BiVO(4) Photoanodes Achieved via Light Absorption in the BiVO(4) Layer Grigioni, Ivan Polo, Annalisa Dozzi, Maria Vittoria Stamplecoskie, Kevin G. Jara, Danilo H. Kamat, Prashant V. Selli, Elena ACS Appl Energy Mater [Image: see text] Photoelectrochemical (PEC) water splitting converts solar light and water into oxygen and energy-rich hydrogen. WO(3)/BiVO(4) heterojunction photoanodes perform much better than the separate oxide components, though internal charge recombination undermines their PEC performance when both oxides absorb light. Here we exploit the BiVO(4) layer to sensitize WO(3) to visible light and shield it from direct photoexcitation to overcome this efficiency loss. PEC experiments and ultrafast transient absorption spectroscopy performed by frontside (through BiVO(4)) or backside (through WO(3)) irradiating photoanodes with different BiVO(4) layer thickness demonstrate that irradiation through BiVO(4) is beneficial for charge separation. Optimized electrodes irradiated through BiVO(4) show 40% higher photocurrent density compared to backside irradiation. American Chemical Society 2022-10-17 2022-11-28 /pmc/articles/PMC9709765/ /pubmed/36465258 http://dx.doi.org/10.1021/acsaem.2c02597 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Grigioni, Ivan
Polo, Annalisa
Dozzi, Maria Vittoria
Stamplecoskie, Kevin G.
Jara, Danilo H.
Kamat, Prashant V.
Selli, Elena
Enhanced Charge Carrier Separation in WO(3)/BiVO(4) Photoanodes Achieved via Light Absorption in the BiVO(4) Layer
title Enhanced Charge Carrier Separation in WO(3)/BiVO(4) Photoanodes Achieved via Light Absorption in the BiVO(4) Layer
title_full Enhanced Charge Carrier Separation in WO(3)/BiVO(4) Photoanodes Achieved via Light Absorption in the BiVO(4) Layer
title_fullStr Enhanced Charge Carrier Separation in WO(3)/BiVO(4) Photoanodes Achieved via Light Absorption in the BiVO(4) Layer
title_full_unstemmed Enhanced Charge Carrier Separation in WO(3)/BiVO(4) Photoanodes Achieved via Light Absorption in the BiVO(4) Layer
title_short Enhanced Charge Carrier Separation in WO(3)/BiVO(4) Photoanodes Achieved via Light Absorption in the BiVO(4) Layer
title_sort enhanced charge carrier separation in wo(3)/bivo(4) photoanodes achieved via light absorption in the bivo(4) layer
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9709765/
https://www.ncbi.nlm.nih.gov/pubmed/36465258
http://dx.doi.org/10.1021/acsaem.2c02597
work_keys_str_mv AT grigioniivan enhancedchargecarrierseparationinwo3bivo4photoanodesachievedvialightabsorptioninthebivo4layer
AT poloannalisa enhancedchargecarrierseparationinwo3bivo4photoanodesachievedvialightabsorptioninthebivo4layer
AT dozzimariavittoria enhancedchargecarrierseparationinwo3bivo4photoanodesachievedvialightabsorptioninthebivo4layer
AT stamplecoskiekeving enhancedchargecarrierseparationinwo3bivo4photoanodesachievedvialightabsorptioninthebivo4layer
AT jaradaniloh enhancedchargecarrierseparationinwo3bivo4photoanodesachievedvialightabsorptioninthebivo4layer
AT kamatprashantv enhancedchargecarrierseparationinwo3bivo4photoanodesachievedvialightabsorptioninthebivo4layer
AT sellielena enhancedchargecarrierseparationinwo3bivo4photoanodesachievedvialightabsorptioninthebivo4layer