Cargando…
Enhanced Charge Carrier Separation in WO(3)/BiVO(4) Photoanodes Achieved via Light Absorption in the BiVO(4) Layer
[Image: see text] Photoelectrochemical (PEC) water splitting converts solar light and water into oxygen and energy-rich hydrogen. WO(3)/BiVO(4) heterojunction photoanodes perform much better than the separate oxide components, though internal charge recombination undermines their PEC performance whe...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9709765/ https://www.ncbi.nlm.nih.gov/pubmed/36465258 http://dx.doi.org/10.1021/acsaem.2c02597 |
_version_ | 1784841229878427648 |
---|---|
author | Grigioni, Ivan Polo, Annalisa Dozzi, Maria Vittoria Stamplecoskie, Kevin G. Jara, Danilo H. Kamat, Prashant V. Selli, Elena |
author_facet | Grigioni, Ivan Polo, Annalisa Dozzi, Maria Vittoria Stamplecoskie, Kevin G. Jara, Danilo H. Kamat, Prashant V. Selli, Elena |
author_sort | Grigioni, Ivan |
collection | PubMed |
description | [Image: see text] Photoelectrochemical (PEC) water splitting converts solar light and water into oxygen and energy-rich hydrogen. WO(3)/BiVO(4) heterojunction photoanodes perform much better than the separate oxide components, though internal charge recombination undermines their PEC performance when both oxides absorb light. Here we exploit the BiVO(4) layer to sensitize WO(3) to visible light and shield it from direct photoexcitation to overcome this efficiency loss. PEC experiments and ultrafast transient absorption spectroscopy performed by frontside (through BiVO(4)) or backside (through WO(3)) irradiating photoanodes with different BiVO(4) layer thickness demonstrate that irradiation through BiVO(4) is beneficial for charge separation. Optimized electrodes irradiated through BiVO(4) show 40% higher photocurrent density compared to backside irradiation. |
format | Online Article Text |
id | pubmed-9709765 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-97097652022-12-01 Enhanced Charge Carrier Separation in WO(3)/BiVO(4) Photoanodes Achieved via Light Absorption in the BiVO(4) Layer Grigioni, Ivan Polo, Annalisa Dozzi, Maria Vittoria Stamplecoskie, Kevin G. Jara, Danilo H. Kamat, Prashant V. Selli, Elena ACS Appl Energy Mater [Image: see text] Photoelectrochemical (PEC) water splitting converts solar light and water into oxygen and energy-rich hydrogen. WO(3)/BiVO(4) heterojunction photoanodes perform much better than the separate oxide components, though internal charge recombination undermines their PEC performance when both oxides absorb light. Here we exploit the BiVO(4) layer to sensitize WO(3) to visible light and shield it from direct photoexcitation to overcome this efficiency loss. PEC experiments and ultrafast transient absorption spectroscopy performed by frontside (through BiVO(4)) or backside (through WO(3)) irradiating photoanodes with different BiVO(4) layer thickness demonstrate that irradiation through BiVO(4) is beneficial for charge separation. Optimized electrodes irradiated through BiVO(4) show 40% higher photocurrent density compared to backside irradiation. American Chemical Society 2022-10-17 2022-11-28 /pmc/articles/PMC9709765/ /pubmed/36465258 http://dx.doi.org/10.1021/acsaem.2c02597 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Grigioni, Ivan Polo, Annalisa Dozzi, Maria Vittoria Stamplecoskie, Kevin G. Jara, Danilo H. Kamat, Prashant V. Selli, Elena Enhanced Charge Carrier Separation in WO(3)/BiVO(4) Photoanodes Achieved via Light Absorption in the BiVO(4) Layer |
title | Enhanced Charge Carrier
Separation in WO(3)/BiVO(4) Photoanodes Achieved
via Light Absorption in the
BiVO(4) Layer |
title_full | Enhanced Charge Carrier
Separation in WO(3)/BiVO(4) Photoanodes Achieved
via Light Absorption in the
BiVO(4) Layer |
title_fullStr | Enhanced Charge Carrier
Separation in WO(3)/BiVO(4) Photoanodes Achieved
via Light Absorption in the
BiVO(4) Layer |
title_full_unstemmed | Enhanced Charge Carrier
Separation in WO(3)/BiVO(4) Photoanodes Achieved
via Light Absorption in the
BiVO(4) Layer |
title_short | Enhanced Charge Carrier
Separation in WO(3)/BiVO(4) Photoanodes Achieved
via Light Absorption in the
BiVO(4) Layer |
title_sort | enhanced charge carrier
separation in wo(3)/bivo(4) photoanodes achieved
via light absorption in the
bivo(4) layer |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9709765/ https://www.ncbi.nlm.nih.gov/pubmed/36465258 http://dx.doi.org/10.1021/acsaem.2c02597 |
work_keys_str_mv | AT grigioniivan enhancedchargecarrierseparationinwo3bivo4photoanodesachievedvialightabsorptioninthebivo4layer AT poloannalisa enhancedchargecarrierseparationinwo3bivo4photoanodesachievedvialightabsorptioninthebivo4layer AT dozzimariavittoria enhancedchargecarrierseparationinwo3bivo4photoanodesachievedvialightabsorptioninthebivo4layer AT stamplecoskiekeving enhancedchargecarrierseparationinwo3bivo4photoanodesachievedvialightabsorptioninthebivo4layer AT jaradaniloh enhancedchargecarrierseparationinwo3bivo4photoanodesachievedvialightabsorptioninthebivo4layer AT kamatprashantv enhancedchargecarrierseparationinwo3bivo4photoanodesachievedvialightabsorptioninthebivo4layer AT sellielena enhancedchargecarrierseparationinwo3bivo4photoanodesachievedvialightabsorptioninthebivo4layer |