Cargando…
Ni(ii) immobilized on poly(guanidine–triazine–sulfonamide) (PGTSA/Ni): a mesoporous nanocatalyst for synthesis of imines
Mesoporous materials have been the subject of intense research regarding their unique structural and textural properties and successful applications in various fields. This study reports a novel approach for synthesizing a novel porous polymer stabilizer through condensation polymerization in which...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9709786/ https://www.ncbi.nlm.nih.gov/pubmed/36545623 http://dx.doi.org/10.1039/d2ra06196a |
_version_ | 1784841233518034944 |
---|---|
author | Ghiai, Ramin Alavinia, Sedigheh Ghorbani-Vaghei, Ramin Gharakhani, Alireza |
author_facet | Ghiai, Ramin Alavinia, Sedigheh Ghorbani-Vaghei, Ramin Gharakhani, Alireza |
author_sort | Ghiai, Ramin |
collection | PubMed |
description | Mesoporous materials have been the subject of intense research regarding their unique structural and textural properties and successful applications in various fields. This study reports a novel approach for synthesizing a novel porous polymer stabilizer through condensation polymerization in which Fe(3)O(4) magnetic nanoparticles (Fe(3)O(4) MNPs) are used as hard templates. Using this method allowed the facile and fast removal of the template and mesopores formation following the Fe(3)O(4) MNPs. Different techniques were performed to characterize the structure of the polymer. Based on the obtained results, the obtained mesoporous polymeric network was multi-layered and consisted of repeating units of sulfonamide, triazine, and guanidine as a novel heterogeneous multifunctional support. Afterward, the new nickel organometallic complex was supported on its inner surface using the porous poly sulfonamide triazine guanidine (PGTSA/Ni). In this process, the obtained PGTSA/Ni nanocomposite was used as a heterogeneous catalyst in the synthesis of imines from amines. Since this reaction has an acceptorless dehydrogenation pathway, the hydrogen gas is released as its by-product. The synthesized nanocatalyst was structurally confirmed using different characterization modalities, including FT-IR, SEM, XRD, EDX, TEM, elemental mapping, ICP-AES, BET, and TGA. In addition, all products were obtained in high turnover frequency (TOF) and turnover number (TON). The corresponding results revealed the high selectivity and activity of the prepared catalyst through these coupling reactions. Overall, the synthesized nanocatalyst is useable for eight cycles with no considerable catalytic efficiency loss. |
format | Online Article Text |
id | pubmed-9709786 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-97097862022-12-20 Ni(ii) immobilized on poly(guanidine–triazine–sulfonamide) (PGTSA/Ni): a mesoporous nanocatalyst for synthesis of imines Ghiai, Ramin Alavinia, Sedigheh Ghorbani-Vaghei, Ramin Gharakhani, Alireza RSC Adv Chemistry Mesoporous materials have been the subject of intense research regarding their unique structural and textural properties and successful applications in various fields. This study reports a novel approach for synthesizing a novel porous polymer stabilizer through condensation polymerization in which Fe(3)O(4) magnetic nanoparticles (Fe(3)O(4) MNPs) are used as hard templates. Using this method allowed the facile and fast removal of the template and mesopores formation following the Fe(3)O(4) MNPs. Different techniques were performed to characterize the structure of the polymer. Based on the obtained results, the obtained mesoporous polymeric network was multi-layered and consisted of repeating units of sulfonamide, triazine, and guanidine as a novel heterogeneous multifunctional support. Afterward, the new nickel organometallic complex was supported on its inner surface using the porous poly sulfonamide triazine guanidine (PGTSA/Ni). In this process, the obtained PGTSA/Ni nanocomposite was used as a heterogeneous catalyst in the synthesis of imines from amines. Since this reaction has an acceptorless dehydrogenation pathway, the hydrogen gas is released as its by-product. The synthesized nanocatalyst was structurally confirmed using different characterization modalities, including FT-IR, SEM, XRD, EDX, TEM, elemental mapping, ICP-AES, BET, and TGA. In addition, all products were obtained in high turnover frequency (TOF) and turnover number (TON). The corresponding results revealed the high selectivity and activity of the prepared catalyst through these coupling reactions. Overall, the synthesized nanocatalyst is useable for eight cycles with no considerable catalytic efficiency loss. The Royal Society of Chemistry 2022-11-30 /pmc/articles/PMC9709786/ /pubmed/36545623 http://dx.doi.org/10.1039/d2ra06196a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Ghiai, Ramin Alavinia, Sedigheh Ghorbani-Vaghei, Ramin Gharakhani, Alireza Ni(ii) immobilized on poly(guanidine–triazine–sulfonamide) (PGTSA/Ni): a mesoporous nanocatalyst for synthesis of imines |
title | Ni(ii) immobilized on poly(guanidine–triazine–sulfonamide) (PGTSA/Ni): a mesoporous nanocatalyst for synthesis of imines |
title_full | Ni(ii) immobilized on poly(guanidine–triazine–sulfonamide) (PGTSA/Ni): a mesoporous nanocatalyst for synthesis of imines |
title_fullStr | Ni(ii) immobilized on poly(guanidine–triazine–sulfonamide) (PGTSA/Ni): a mesoporous nanocatalyst for synthesis of imines |
title_full_unstemmed | Ni(ii) immobilized on poly(guanidine–triazine–sulfonamide) (PGTSA/Ni): a mesoporous nanocatalyst for synthesis of imines |
title_short | Ni(ii) immobilized on poly(guanidine–triazine–sulfonamide) (PGTSA/Ni): a mesoporous nanocatalyst for synthesis of imines |
title_sort | ni(ii) immobilized on poly(guanidine–triazine–sulfonamide) (pgtsa/ni): a mesoporous nanocatalyst for synthesis of imines |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9709786/ https://www.ncbi.nlm.nih.gov/pubmed/36545623 http://dx.doi.org/10.1039/d2ra06196a |
work_keys_str_mv | AT ghiairamin niiiimmobilizedonpolyguanidinetriazinesulfonamidepgtsaniamesoporousnanocatalystforsynthesisofimines AT alaviniasedigheh niiiimmobilizedonpolyguanidinetriazinesulfonamidepgtsaniamesoporousnanocatalystforsynthesisofimines AT ghorbanivagheiramin niiiimmobilizedonpolyguanidinetriazinesulfonamidepgtsaniamesoporousnanocatalystforsynthesisofimines AT gharakhanialireza niiiimmobilizedonpolyguanidinetriazinesulfonamidepgtsaniamesoporousnanocatalystforsynthesisofimines |