Cargando…
Scalable transcriptomics analysis with Dask: applications in data science and machine learning
BACKGROUND: Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the prediction, diagnosis and prognosis of different diseases. Data science and specifically machine learning have many applications...
Autores principales: | Moreno, Marta, Vilaça, Ricardo, Ferreira, Pedro G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710082/ https://www.ncbi.nlm.nih.gov/pubmed/36451115 http://dx.doi.org/10.1186/s12859-022-05065-3 |
Ejemplares similares
-
Data science with Python and Dask
por: Daniel, Jesse C
Publicado: (2019) -
Introducing Live Visualization for Distributed RDataFrame with Dask
por: Taider, Silia
Publicado: (2023) -
Machine learning with Spark: create scalable machine learning applications to power a modern data-driven business using Spark
por: Pentreath, Nick
Publicado: (2015) -
Scala for data science: leverage the power of Scala to build scalable, robust data science applications
por: Bugnion, Pascal
Publicado: (2016) -
Interoperable and scalable data analysis with microservices: applications in metabolomics
por: Emami Khoonsari, Payam, et al.
Publicado: (2019)