Cargando…
Antimicrobial resistance, virulence associated genes and phylogenetic background versus plasmid replicon types: the possible associations in avian pathogenic Escherichia coli (APEC)
BACKGROUND: Antimicrobial resistance (AMR) in bacterial isolates from food producing animals not only challenges the preventive and therapeutic strategies in veterinary medicine, but also threatens public health. Genetic elements placed on both chromosome and plasmids could be involved in AMR. In th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710092/ https://www.ncbi.nlm.nih.gov/pubmed/36447231 http://dx.doi.org/10.1186/s12917-022-03496-x |
Sumario: | BACKGROUND: Antimicrobial resistance (AMR) in bacterial isolates from food producing animals not only challenges the preventive and therapeutic strategies in veterinary medicine, but also threatens public health. Genetic elements placed on both chromosome and plasmids could be involved in AMR. In the present study, the associations of genomic backbone and plasmids with AMR were evaluated. We also provided some primary evidences that which genetic lineages potentially host certain groups of plasmids. RESULTS: In the current study, 72 avian pathogenic Escherichia coli (APEC) strains were examined. Isolates resistant to tetracycline and trimethoprim-sulfamethoxazole (87.5%; each), and harboring bla(TEM) (61.1%) were dominant. Moreover, phylogroup D was the most prevalent phylogroup in total (23.6%), and among multidrug-resistant (MDR) isolates (14/63). The most prevalent Inc-types were also defined as follows: IncP (65.2%), IncI1 (58.3%), and IncF group (54.1%). Significant associations among phylogroups and AMR were observed such as group C to neomycin (p = 0.002), gentamicin (p = 0.017) and florfenicol (p = 0.036). Furthermore, group D was associated with bla(CTX). In terms of associations among Inc-types and AMR, resistance to aminoglycoside antibiotics was considerably linked with IncP (p = 0.012), IncI1 (p = 0.038) and IncA/C (p = 0.005). The bla(TEM) and bla(CTX) genes presence were connected with IncI1 (p = 0.003) and IncFIC (p = 0.013), respectively. It was also shown that members of the D phylogroup frequently occured in replicon types FIC (8/20), P (13/47), I1 (13/42), HI2 (5/14) and L/M (3/3). CONCLUSIONS: Accorging to the results, it seems that group D strains have a great potential to host a variety of plasmids (Inc-types) carrying different AMR genes. Thus, based on the results of the current study, phyogroup D could be a potential challenge in dealing with AMR in poultry. There were more strong correlations among Inc-types and AMR compared to phylotypes and AMR. It is suggested that in epidemiological studies on AMR both genomic backbone and major plasmid types should be investigated. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12917-022-03496-x. |
---|