Cargando…
SRGS: sparse partial least squares-based recursive gene selection for gene regulatory network inference
BACKGROUND: The identification of gene regulatory networks (GRNs) facilitates the understanding of the underlying molecular mechanism of various biological processes and complex diseases. With the availability of single-cell RNA sequencing data, it is essential to infer GRNs from single-cell express...
Autores principales: | Guan, Jinting, Wang, Yang, Wang, Yongjie, Zhuang, Yan, Ji, Guoli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710113/ https://www.ncbi.nlm.nih.gov/pubmed/36451086 http://dx.doi.org/10.1186/s12864-022-09020-7 |
Ejemplares similares
-
Recursive N-Way Partial Least Squares for Brain-Computer Interface
por: Eliseyev, Andrey, et al.
Publicado: (2013) -
Minibatch Recursive Least Squares Q-Learning
por: Zhang, Chunyuan, et al.
Publicado: (2021) -
Online adaptive group-wise sparse Penalized Recursive Exponentially Weighted N-way Partial Least Square for epidural intracranial BCI
por: Moly, Alexandre, et al.
Publicado: (2023) -
A multiple hold-out framework for Sparse Partial Least Squares
por: Monteiro, João M., et al.
Publicado: (2016) -
[Formula: see text] -regularized recursive total least squares based sparse system identification for the error-in-variables
por: Lim, Jun-seok, et al.
Publicado: (2016)