Cargando…
Synthetic Micrographs of Bacteria (SyMBac) allows accurate segmentation of bacterial cells using deep neural networks
BACKGROUND: Deep-learning–based image segmentation models are required for accurate processing of high-throughput timelapse imaging data of bacterial cells. However, the performance of any such model strictly depends on the quality and quantity of training data, which is difficult to generate for ba...
Autores principales: | Hardo, Georgeos, Noka, Maximilian, Bakshi, Somenath |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710168/ https://www.ncbi.nlm.nih.gov/pubmed/36447211 http://dx.doi.org/10.1186/s12915-022-01453-6 |
Ejemplares similares
-
Challenges of analysing stochastic gene expression in bacteria using single-cell time-lapse experiments
por: Hardo, Georgeos, et al.
Publicado: (2021) -
High-efficiency procedure to characterize, segment, and quantify complex multicellularity in raw micrographs in plants
por: Zhang, Xi, et al.
Publicado: (2020) -
Micrographic Surgery Allows Fascia Preservation in Dermatofibrosarcoma Protuberans
por: GASSENMAIER, Maximilian, et al.
Publicado: (2021) -
Identification and classification of human cytomegalovirus capsids in textured electron micrographs using deformed template matching
por: Ryner, Martin, et al.
Publicado: (2006) -
A synthetic biology approach allows inducible retrotransposition in whole plants
por: Böhmdorfer, Gudrun, et al.
Publicado: (2010)