Cargando…
Exploring the configurational space of amorphous graphene with machine-learned atomic energies
Two-dimensionally extended amorphous carbon (“amorphous graphene”) is a prototype system for disorder in 2D, showing a rich and complex configurational space that is yet to be fully understood. Here we explore the nature of amorphous graphene with an atomistic machine-learning (ML) model. We create...
Autores principales: | El-Machachi, Zakariya, Wilson, Mark, Deringer, Volker L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710228/ https://www.ncbi.nlm.nih.gov/pubmed/36544732 http://dx.doi.org/10.1039/d2sc04326b |
Ejemplares similares
-
Quantifying Chemical Structure and Machine‐Learned Atomic Energies in Amorphous and Liquid Silicon
por: Bernstein, Noam, et al.
Publicado: (2019) -
Reactivity of Amorphous Carbon Surfaces: Rationalizing
the Role of Structural Motifs in Functionalization Using Machine Learning
por: Caro, Miguel A., et al.
Publicado: (2018) -
Coarse-grained versus fully atomistic machine learning for zeolitic imidazolate frameworks
por: Faure Beaulieu, Zoé, et al.
Publicado: (2023) -
Extracting Crystal Chemistry from Amorphous Carbon Structures
por: Deringer, Volker L., et al.
Publicado: (2017) -
A transferable active-learning strategy for reactive molecular force fields
por: Young, Tom A., et al.
Publicado: (2021)