Cargando…
Data storage architectures to accelerate chemical discovery: data accessibility for individual laboratories and the community
As buzzwords like “big data,” “machine learning,” and “high-throughput” expand through chemistry, chemists need to consider more than ever their data storage, data management, and data accessibility, whether in their own laboratories or with the broader community. While it is commonplace for chemist...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710231/ https://www.ncbi.nlm.nih.gov/pubmed/36544717 http://dx.doi.org/10.1039/d2sc05142g |
Sumario: | As buzzwords like “big data,” “machine learning,” and “high-throughput” expand through chemistry, chemists need to consider more than ever their data storage, data management, and data accessibility, whether in their own laboratories or with the broader community. While it is commonplace for chemists to use spreadsheets for data storage and analysis, a move towards database architectures ensures that the data can be more readily findable, accessible, interoperable, and reusable (FAIR). However, making this move has several challenges for those with limited-to-no knowledge of computer programming and databases. This Perspective presents basics of data management using databases with a focus on chemical data. We overview database fundamentals by exploring benefits of database use, introducing terminology, and establishing database design principles. We then detail the extract, transform, and load process for database construction, which includes an overview of data parsing and database architectures, spanning Standard Query Language (SQL) and No-SQL structures. We close by cataloging overarching challenges in database design. This Perspective is accompanied by an interactive demonstration available at https://github.com/D3TaLES/databases_demo. We do all of this within the context of chemical data with the aim of equipping chemists with the knowledge and skills to store, manage, and share their data while abiding by FAIR principles. |
---|