Cargando…
Data storage architectures to accelerate chemical discovery: data accessibility for individual laboratories and the community
As buzzwords like “big data,” “machine learning,” and “high-throughput” expand through chemistry, chemists need to consider more than ever their data storage, data management, and data accessibility, whether in their own laboratories or with the broader community. While it is commonplace for chemist...
Autores principales: | Duke, Rebekah, Bhat, Vinayak, Risko, Chad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710231/ https://www.ncbi.nlm.nih.gov/pubmed/36544717 http://dx.doi.org/10.1039/d2sc05142g |
Ejemplares similares
-
Electronic, redox, and optical property prediction of organic π-conjugated molecules through a hierarchy of machine learning approaches
por: Bhat, Vinayak, et al.
Publicado: (2022) -
Data-Centric Architecture for Self-Driving Laboratories with Autonomous Discovery of New Nanomaterials
por: Butakova, Maria A., et al.
Publicado: (2021) -
Accelerating organic solar cell material's discovery: high-throughput screening and big data
por: Rodríguez-Martínez, Xabier, et al.
Publicado: (2021) -
Chemogenomics for drug discovery: clinical molecules from open access chemical probes
por: Quinlan, Robert B. A., et al.
Publicado: (2021) -
Data storage and access in LHC++
por: Nowak, M A
Publicado: (2000)