Cargando…
Improving and evaluating deep learning models of cellular organization
MOTIVATION: Cells contain dozens of major organelles and thousands of other structures, many of which vary extensively in their number, size, shape and spatial distribution. This complexity and variation dramatically complicates the use of both traditional and deep learning methods to build accurate...
Autores principales: | Sun, Huangqingbo, Fu, Xuecong, Abraham, Serena, Jin, Shen, Murphy, Robert F |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710556/ https://www.ncbi.nlm.nih.gov/pubmed/36264139 http://dx.doi.org/10.1093/bioinformatics/btac688 |
Ejemplares similares
-
Evaluation of categorical matrix completion algorithms: toward improved active learning for drug discovery
por: Sun, Huangqingbo, et al.
Publicado: (2021) -
Basal body organization and cell geometry during the cell cycle in Tetrahymena thermophila
por: Sun, Huangqingbo, et al.
Publicado: (2023) -
Physics-aware training for the physical machine learning model building
por: Sun, Xuecong, et al.
Publicado: (2022) -
Deep learning-based two-step organs at risk auto-segmentation model for brachytherapy planning in parotid gland carcinoma
por: Li, Zhen-Yu, et al.
Publicado: (2022) -
A MEMS Variable Optical Attenuator with Ultra-Low Wavelength-Dependent Loss and Polarization-Dependent Loss
por: Sun, Huangqingbo, et al.
Publicado: (2018)