Cargando…
Generating tertiary protein structures via interpretable graph variational autoencoders
MOTIVATION: Modeling the structural plasticity of protein molecules remains challenging. Most research has focused on obtaining one biologically active structure. This includes the recent AlphaFold2 that has been hailed as a breakthrough for protein modeling. Computing one structure does not suffice...
Autores principales: | Guo, Xiaojie, Du, Yuanqi, Tadepalli, Sivani, Zhao, Liang, Shehu, Amarda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710582/ https://www.ncbi.nlm.nih.gov/pubmed/36700110 http://dx.doi.org/10.1093/bioadv/vbab036 |
Ejemplares similares
-
Generative Adversarial Learning of Protein Tertiary Structures
por: Rahman, Taseef, et al.
Publicado: (2021) -
Reducing Ensembles of Protein Tertiary Structures Generated De Novo via Clustering
por: Zaman, Ahmed Bin, et al.
Publicado: (2020) -
Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation
por: Kwon, Youngchun, et al.
Publicado: (2019) -
Synthetic electronic health records generated with variational graph autoencoders
por: Nikolentzos, Giannis, et al.
Publicado: (2023) -
Interpretable Feature Generation in ECG Using a Variational Autoencoder
por: Kuznetsov, V. V., et al.
Publicado: (2021)