Cargando…
Mining hidden knowledge: embedding models of cause–effect relationships curated from the biomedical literature
MOTIVATION: We explore the use of literature-curated signed causal gene expression and gene–function relationships to construct unsupervised embeddings of genes, biological functions and diseases. Our goal is to prioritize and predict activating and inhibiting functional associations of genes and to...
Autores principales: | Krämer, Andreas, Green, Jeff, Billaud, Jean-Noël, Pasare, Nicoleta Andreea, Jones, Martin, Tugendreich, Stuart |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710590/ https://www.ncbi.nlm.nih.gov/pubmed/36699407 http://dx.doi.org/10.1093/bioadv/vbac022 |
Ejemplares similares
-
The Coronavirus Network Explorer: mining a large-scale knowledge graph for effects of SARS-CoV-2 on host cell function
por: Krämer, Andreas, et al.
Publicado: (2021) -
Causal analysis approaches in Ingenuity Pathway Analysis
por: Krämer, Andreas, et al.
Publicado: (2014) -
Text Mining Genotype-Phenotype Relationships from Biomedical Literature for Database Curation and Precision Medicine
por: Singhal, Ayush, et al.
Publicado: (2016) -
Predicting biomedical relationships using the knowledge and graph embedding cascade model
por: Liang, Xiaomin, et al.
Publicado: (2019) -
Accelerated variant curation from scientific literature using biomedical text mining
por: Mallick, Rishab, et al.
Publicado: (2022)