Cargando…
A random forest classifier for protein–protein docking models
: Herein, we present the results of a machine learning approach we developed to single out correct 3D docking models of protein–protein complexes obtained by popular docking software. To this aim, we generated [Formula: see text] docking models for each of the 230 complexes in the protein–protein b...
Autores principales: | Barradas-Bautista, Didier, Cao, Zhen, Vangone, Anna, Oliva, Romina, Cavallo, Luigi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710594/ https://www.ncbi.nlm.nih.gov/pubmed/36699405 http://dx.doi.org/10.1093/bioadv/vbab042 |
Ejemplares similares
-
Improving classification of correct and incorrect protein–protein docking models by augmenting the training set
por: Barradas-Bautista, Didier, et al.
Publicado: (2023) -
CONS-COCOMAPS: a novel tool to measure and visualize the conservation of inter-residue contacts in multiple docking solutions
por: Vangone, Anna, et al.
Publicado: (2012) -
The CASP13-CAPRI targets as case studies to illustrate a novel scoring pipeline integrating CONSRANK with clustering and interface analyses
por: Barradas-Bautista, Didier, et al.
Publicado: (2020) -
Analysis and Ranking of Protein-Protein Docking Models Using Inter-Residue Contacts and Inter-Molecular Contact Maps
por: Oliva, Romina, et al.
Publicado: (2015) -
MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories
por: Abdel-Azeim, Safwat, et al.
Publicado: (2014)