Cargando…
reComBat: batch-effect removal in large-scale multi-source gene-expression data integration
MOTIVATION: With the steadily increasing abundance of omics data produced all over the world under vastly different experimental conditions residing in public databases, a crucial step in many data-driven bioinformatics applications is that of data integration. The challenge of batch-effect removal...
Autores principales: | Adamer, Michael F, Brüningk, Sarah C, Tejada-Arranz, Alejandro, Estermann, Fabienne, Basler, Marek, Borgwardt, Karsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710604/ https://www.ncbi.nlm.nih.gov/pubmed/36699372 http://dx.doi.org/10.1093/bioadv/vbac071 |
Ejemplares similares
-
Removing batch effects from purified plasma cell gene expression microarrays with modified ComBat
por: Stein, Caleb K, et al.
Publicado: (2015) -
ComBat-seq: batch effect adjustment for RNA-seq count data
por: Zhang, Yuqing, et al.
Publicado: (2020) -
Removing Batch Effects from Longitudinal Gene Expression - Quantile Normalization Plus ComBat as Best Approach for Microarray Transcriptome Data
por: Müller, Christian, et al.
Publicado: (2016) -
Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA
por: Radua, Joaquim, et al.
Publicado: (2020) -
Generalized ComBat harmonization methods for radiomic features with multi-modal distributions and multiple batch effects
por: Horng, Hannah, et al.
Publicado: (2022)