Cargando…
Balanced Functional Module Detection in genomic data
MOTIVATION: High-dimensional genomic data can be analyzed to understand the effects of variables on a target variable such as a clinical outcome. For understanding the underlying biological mechanism affecting the target, it is important to discover the complete set of relevant variables. Thus varia...
Autores principales: | Tritchler, David, Towle-Miller, Lorin M, Miecznikowski, Jeffrey C |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710612/ https://www.ncbi.nlm.nih.gov/pubmed/36700111 http://dx.doi.org/10.1093/bioadv/vbab018 |
Ejemplares similares
-
SuMO-Fil: Supervised multi-omic filtering prior to performing network analysis
por: Towle-Miller, Lorin M., et al.
Publicado: (2021) -
MOSCATO: a supervised approach for analyzing multi-Omic single-Cell data
por: Towle-Miller, Lorin M., et al.
Publicado: (2022) -
Feature Detection Techniques for Preprocessing Proteomic Data
por: Sellers, Kimberly F., et al.
Publicado: (2010) -
Preferred analysis methods for Affymetrix GeneChips. II. An expanded, balanced, wholly-defined spike-in dataset
por: Zhu, Qianqian, et al.
Publicado: (2010) -
Using a higher criticism statistic to detect modest effects in a genome-wide study of rheumatoid arthritis
por: Parkhomenko, Elena, et al.
Publicado: (2009)