Cargando…
Federated horizontally partitioned principal component analysis for biomedical applications
MOTIVATION: Federated learning enables privacy-preserving machine learning in the medical domain because the sensitive patient data remain with the owner and only parameters are exchanged between the data holders. The federated scenario introduces specific challenges related to the decentralized nat...
Autores principales: | Hartebrodt, Anne, Röttger, Richard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710634/ https://www.ncbi.nlm.nih.gov/pubmed/36699354 http://dx.doi.org/10.1093/bioadv/vbac026 |
Ejemplares similares
-
Application of principal component analysis for the optimisation of lead(II) biosorption
por: Wajda, Łukasz, et al.
Publicado: (2017) -
Federated learning algorithms for generalized mixed-effects model (GLMM) on horizontally partitioned data from distributed sources
por: Li, Wentao, et al.
Publicado: (2022) -
Component retention in principal component analysis with application to cDNA microarray data
por: Cangelosi, Richard, et al.
Publicado: (2007) -
Nonlinear principal component analysis and its applications
por: Mori, Yuichi, et al.
Publicado: (2016) -
The FeatureCloud Platform for Federated Learning in Biomedicine: Unified Approach
por: Matschinske, Julian, et al.
Publicado: (2023)