Cargando…
Light attention predicts protein location from the language of life
SUMMARY: Although knowing where a protein functions in a cell is important to characterize biological processes, this information remains unavailable for most known proteins. Machine learning narrows the gap through predictions from expert-designed input features leveraging information from multiple...
Autores principales: | Stärk, Hannes, Dallago, Christian, Heinzinger, Michael, Rost, Burkhard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710637/ https://www.ncbi.nlm.nih.gov/pubmed/36700108 http://dx.doi.org/10.1093/bioadv/vbab035 |
Ejemplares similares
-
Embeddings from protein language models predict conservation and variant effects
por: Marquet, Céline, et al.
Publicado: (2021) -
Modeling aspects of the language of life through transfer-learning protein sequences
por: Heinzinger, Michael, et al.
Publicado: (2019) -
Protein embeddings and deep learning predict binding residues for various ligand classes
por: Littmann, Maria, et al.
Publicado: (2021) -
Embeddings from deep learning transfer GO annotations beyond homology
por: Littmann, Maria, et al.
Publicado: (2021) -
SETH predicts nuances of residue disorder from protein embeddings
por: Ilzhöfer, Dagmar, et al.
Publicado: (2022)