Cargando…
decoupleR: ensemble of computational methods to infer biological activities from omics data
SUMMARY: Many methods allow us to extract biological activities from omics data using information from prior knowledge resources, reducing the dimensionality for increased statistical power and better interpretability. Here, we present decoupleR, a Bioconductor and Python package containing computat...
Autores principales: | Badia-i-Mompel, Pau, Vélez Santiago, Jesús, Braunger, Jana, Geiss, Celina, Dimitrov, Daniel, Müller-Dott, Sophia, Taus, Petr, Dugourd, Aurelien, Holland, Christian H, Ramirez Flores, Ricardo O, Saez-Rodriguez, Julio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710656/ https://www.ncbi.nlm.nih.gov/pubmed/36699385 http://dx.doi.org/10.1093/bioadv/vbac016 |
Ejemplares similares
-
FUNKI: interactive functional footprint-based analysis of omics data
por: Hernansaiz-Ballesteros, Rosa, et al.
Publicado: (2022) -
Expanding the coverage of regulons from high-confidence prior knowledge for accurate estimation of transcription factor activities
por: Müller-Dott, Sophia, et al.
Publicado: (2023) -
Converting networks to predictive logic models from perturbation signalling data with CellNOpt
por: Gjerga, Enio, et al.
Publicado: (2020) -
scMEGA: single-cell multi-omic enhancer-based gene regulatory network inference
por: Li, Zhijian, et al.
Publicado: (2023) -
A decoupled, modular and scriptable architecture for tools to curate data platforms
por: Langenstein, Momo, et al.
Publicado: (2021)