Cargando…
Computationally efficient mechanism discovery for cell invasion with uncertainty quantification
Parameter estimation for mathematical models of biological processes is often difficult and depends significantly on the quality and quantity of available data. We introduce an efficient framework using Gaussian processes to discover mechanisms underlying delay, migration, and proliferation in a cel...
Autores principales: | VandenHeuvel, Daniel J., Drovandi, Christopher, Simpson, Matthew J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710850/ https://www.ncbi.nlm.nih.gov/pubmed/36383612 http://dx.doi.org/10.1371/journal.pcbi.1010599 |
Ejemplares similares
-
Estimating parameters of a stochastic cell invasion model with fluorescent cell cycle labelling using approximate Bayesian computation
por: Carr, Michael J., et al.
Publicado: (2021) -
Sparsifying priors for Bayesian uncertainty quantification in model discovery
por: Hirsh, Seth M., et al.
Publicado: (2022) -
Uncertainty quantification in computational fluid dynamics
por: Bijl, Hester, et al.
Publicado: (2013) -
Bayesian uncertainty quantification for data-driven equation learning
por: Martina-Perez, Simon, et al.
Publicado: (2021) -
Parameter estimation and uncertainty quantification using information geometry
por: Sharp, Jesse A., et al.
Publicado: (2022)