Cargando…
DeepVelo: Single-cell transcriptomic deep velocity field learning with neural ordinary differential equations
Recent advances in single-cell sequencing technologies have provided unprecedented opportunities to measure the gene expression profile and RNA velocity of individual cells. However, modeling transcriptional dynamics is computationally challenging because of the high-dimensional, sparse nature of th...
Autores principales: | Chen, Zhanlin, King, William C., Hwang, Aheyon, Gerstein, Mark, Zhang, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710871/ https://www.ncbi.nlm.nih.gov/pubmed/36449617 http://dx.doi.org/10.1126/sciadv.abq3745 |
Ejemplares similares
-
HAVOC: Small-scale histomic mapping of cancer biodiversity across large tissue distances using deep neural networks
por: Dent, Anglin, et al.
Publicado: (2023) -
DeepAIR: A deep learning framework for effective integration of sequence and 3D structure to enable adaptive immune receptor analysis
por: Zhao, Yu, et al.
Publicado: (2023) -
Transcriptomic forecasting with neural ordinary differential equations
por: Erbe, Rossin, et al.
Publicado: (2023) -
Deep learning reveals predictive sequence concepts within immune repertoires to immunotherapy
por: Sidhom, John-William, et al.
Publicado: (2022) -
Accelerating drug target inhibitor discovery with a deep generative foundation model
por: Chenthamarakshan, Vijil, et al.
Publicado: (2023)