Cargando…

Potential of vibrational spectroscopy coupled with machine learning as a non-invasive diagnostic method for COVID-19

BACKGROUND AND OBJECTIVE: Efforts to alleviate the ongoing coronavirus disease 2019 (COVID-19) crisis showed that rapid, sensitive, and large-scale screening is critical for controlling the current infection and that of ongoing pandemics. METHODS: Here, we explored the potential of vibrational spect...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Bingqiang, Zhai, Honglin, Shao, Haiping, Bi, Kexin, Zhu, Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9711896/
https://www.ncbi.nlm.nih.gov/pubmed/36706562
http://dx.doi.org/10.1016/j.cmpb.2022.107295
Descripción
Sumario:BACKGROUND AND OBJECTIVE: Efforts to alleviate the ongoing coronavirus disease 2019 (COVID-19) crisis showed that rapid, sensitive, and large-scale screening is critical for controlling the current infection and that of ongoing pandemics. METHODS: Here, we explored the potential of vibrational spectroscopy coupled with machine learning to screen COVID-19 patients in its initial stage. Herein presented is a hybrid classification model called grey wolf optimized support vector machine (GWO-SVM). The proposed model was tested and comprehensively compared with other machine learning models via vibrational spectroscopic fingerprinting including saliva FTIR spectra dataset and serum Raman scattering spectra dataset. RESULTS: For the unknown vibrational spectra, the presented GWO-SVM model provided an accuracy, specificity and F1_score value of 0.9825, 0.9714 and 0.9778 for saliva FTIR spectra dataset, respectively, while an overall accuracy, specificity and F1_score value of 0.9085, 0.9552 and 0.9036 for serum Raman scattering spectra dataset, respectively, which showed superiority than those of state-of-the-art models, thereby suggesting the suitability of the GWO-SVM model to be adopted in a clinical setting for initial screening of COVID-19 patients. CONCLUSIONS: Prospectively, the presented vibrational spectroscopy based GWO-SVM model can facilitate in screening of COVID-19 patients and alleviate the medical service burden. Therefore, herein proof-of-concept results showed the chance of vibrational spectroscopy coupled with GWO-SVM model to help COVID-19 diagnosis and have the potential be further used for early screening of other infectious diseases.