Cargando…

Variations of retinal dysfunctions with the level of cannabis use in regular users: Toward a better understanding of cannabis use pathophysiology

The impact of regular cannabis use on retinal function has already been studied using flash (fERG) and pattern (PERG) electroretinogram. Delayed ganglion and bipolar cells responses were observed as showed by increased peak time of PERG N95 and fERG b-wave recorded in photopic condition. Hypoactivit...

Descripción completa

Detalles Bibliográficos
Autores principales: Schwitzer, Thomas, Moreno-Zaragoza, Aldo, Dramé, Louis, Schwan, Raymund, Angioi-Duprez, Karine, Albuisson, Eliane, Laprévote, Vincent
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712212/
https://www.ncbi.nlm.nih.gov/pubmed/36465284
http://dx.doi.org/10.3389/fpsyt.2022.959347
Descripción
Sumario:The impact of regular cannabis use on retinal function has already been studied using flash (fERG) and pattern (PERG) electroretinogram. Delayed ganglion and bipolar cells responses were observed as showed by increased peak time of PERG N95 and fERG b-wave recorded in photopic condition. Hypoactivity of amacrine cells was also showed by decreased amplitudes of oscillatory potentials (OPs). However, it is unknown how these retinal anomalies evolve according to the level of cannabis use in cannabis users. The aim of this study was to longitudinally assess the retinal function during a treatment aiming to reduce cannabis use. We recorded PERG and fERG in 40 regular cannabis users receiving either an 8 weeks mindfulness-based relapse prevention program or an 8 weeks treatment-as-usual therapy. ERGs were recorded before treatment, at the end of it, and 4 weeks afterward. We found reduced peak times in PERG N95 and fERG b-wave (p = 0.032 and p = 0.024: Dunn’s post-hoc test) recorded at week 8 and increased amplitudes in OP2 and OP3 (p = 0.012 and p = 0.030: Dunn’s post-hoc test) recorded at week 12 in users with decreased cannabis use. These results support variations of retinal anomalies with the level of cannabis use, implying that reduction of cannabis use could restore retinal function in regular users.