Cargando…
Accelerated 4D‐flow MRI with 3‐point encoding enabled by machine learning
PURPOSE: To investigate the acceleration of 4D‐flow MRI using a convolutional neural network (CNN) that produces three directional velocities from three flow encodings, without requiring a fourth reference scan measuring background phase. METHODS: A fully 3D CNN using a U‐net architecture was traine...
Autores principales: | Kim, Dahan, Jen, Mu‐Lan, Eisenmenger, Laura B., Johnson, Kevin M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712238/ https://www.ncbi.nlm.nih.gov/pubmed/36198027 http://dx.doi.org/10.1002/mrm.29469 |
Ejemplares similares
-
Learning a preconditioner to accelerate compressed sensing reconstructions in MRI
por: Koolstra, Kirsten, et al.
Publicado: (2021) -
Deep learning–based velocity antialiasing of 4D‐flow MRI
por: Berhane, Haben, et al.
Publicado: (2022) -
Automated mitral valve vortex ring extraction from 4D‐flow MRI
por: Kräuter, Corina, et al.
Publicado: (2020) -
A ranking of diffusion MRI compartment models with in vivo human brain data
por: Ferizi, Uran, et al.
Publicado: (2014) -
Fast Fourier‐based simulation of off‐resonance artifacts in steady‐state gradient echo MRI applied to metal object localization
por: Zijlstra, Frank, et al.
Publicado: (2016)