Cargando…

Development and internal validation of a clinical prediction model using machine learning algorithms for 90 day and 2 year mortality in femoral neck fracture patients aged 65 years or above

PURPOSE: Preoperative prediction of mortality in femoral neck fracture patients aged 65 years or above may be valuable in the treatment decision-making. A preoperative clinical prediction model can aid surgeons and patients in the shared decision-making process, and optimize care for elderly femoral...

Descripción completa

Detalles Bibliográficos
Autores principales: Oosterhoff, Jacobien Hillina Froukje, Savelberg, Angelique Berit Marte Corlijn, Karhade, Aditya Vishwas, Gravesteijn, Benjamin Yaël, Doornberg, Job Nicolaas, Schwab, Joseph Hasbrouck, Heng, Marilyn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712294/
https://www.ncbi.nlm.nih.gov/pubmed/35643788
http://dx.doi.org/10.1007/s00068-022-01981-4
Descripción
Sumario:PURPOSE: Preoperative prediction of mortality in femoral neck fracture patients aged 65 years or above may be valuable in the treatment decision-making. A preoperative clinical prediction model can aid surgeons and patients in the shared decision-making process, and optimize care for elderly femoral neck fracture patients. This study aimed to develop and internally validate a clinical prediction model using machine learning (ML) algorithms for 90 day and 2 year mortality in femoral neck fracture patients aged 65 years or above. METHODS: A retrospective cohort study at two trauma level I centers and three (non-level I) community hospitals was conducted to identify patients undergoing surgical fixation for a femoral neck fracture. Five different ML algorithms were developed and internally validated and assessed by discrimination, calibration, Brier score and decision curve analysis. RESULTS: In total, 2478 patients were included with 90 day and 2 year mortality rates of 9.1% (n = 225) and 23.5% (n = 582) respectively. The models included patient characteristics, comorbidities and laboratory values. The stochastic gradient boosting algorithm had the best performance for 90 day mortality prediction, with good discrimination (c-statistic = 0.74), calibration (intercept = − 0.05, slope = 1.11) and Brier score (0.078). The elastic-net penalized logistic regression algorithm had the best performance for 2 year mortality prediction, with good discrimination (c-statistic = 0.70), calibration (intercept = − 0.03, slope = 0.89) and Brier score (0.16). The models were incorporated into a freely available web-based application, including individual patient explanations for interpretation of the model to understand the reasoning how the model made a certain prediction: https://sorg-apps.shinyapps.io/hipfracturemortality/ CONCLUSIONS: The clinical prediction models show promise in estimating mortality prediction in elderly femoral neck fracture patients. External and prospective validation of the models may improve surgeon ability when faced with the treatment decision-making. LEVEL OF EVIDENCE: Prognostic Level II. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00068-022-01981-4.