Cargando…
Paralog Explorer: A resource for mining information about paralogs in common research organisms
Paralogs are genes which arose via gene duplication, and when such paralogs retain overlapping or redundant function, this poses a challenge to functional genetics research. Recent technological advancements have made it possible to systematically probe gene function for redundant genes using dual o...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712503/ https://www.ncbi.nlm.nih.gov/pubmed/36467589 http://dx.doi.org/10.1016/j.csbj.2022.11.041 |
Sumario: | Paralogs are genes which arose via gene duplication, and when such paralogs retain overlapping or redundant function, this poses a challenge to functional genetics research. Recent technological advancements have made it possible to systematically probe gene function for redundant genes using dual or multiplex gene perturbation, and there is a need for a simple bioinformatic tool to identify putative paralogs of a gene(s) of interest. We have developed Paralog Explorer (https://www.flyrnai.org/tools/paralogs/), an online resource that allows researchers to quickly and accurately identify candidate paralogous genes in the genomes of the model organisms D. melanogaster, C. elegans, D. rerio, M. musculus, and H. sapiens. Paralog Explorer deploys an effective between-species ortholog prediction software, DIOPT, to analyze within-species paralogs. Paralog Explorer allows users to identify candidate paralogs, and to navigate relevant databases regarding gene co-expression, protein–protein and genetic interaction, as well as gene ontology and phenotype annotations. Altogether, this tool extends the value of current ortholog prediction resources by providing sophisticated features useful for identification and study of paralogous genes. |
---|