Cargando…
Reduced order modeling for flow and transport problems with Barlow Twins self-supervised learning
We propose a unified data-driven reduced order model (ROM) that bridges the performance gap between linear and nonlinear manifold approaches. Deep learning ROM (DL-ROM) using deep-convolutional autoencoders (DC–AE) has been shown to capture nonlinear solution manifolds but fails to perform adequatel...
Autores principales: | Kadeethum, Teeratorn, Ballarin, Francesco, O’Malley, Daniel, Choi, Youngsoo, Bouklas, Nikolaos, Yoon, Hongkyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712510/ https://www.ncbi.nlm.nih.gov/pubmed/36450820 http://dx.doi.org/10.1038/s41598-022-24545-3 |
Ejemplares similares
-
Enhancing high-fidelity nonlinear solver with reduced order model
por: Kadeethum, Teeratorn, et al.
Publicado: (2022) -
John Barlow
Publicado: (1944) -
Dr. Barlow
Publicado: (1844) -
Physics-informed neural networks for solving nonlinear diffusivity and Biot’s equations
por: Kadeethum, Teeratorn, et al.
Publicado: (2020) -
Joel Barlow and Seasickness
por: Zunder, Theodore A.
Publicado: (1929)