Cargando…
Spatiotemporal prediction of O(3) concentration based on the KNN-Prophet-LSTM model
In this paper, a prediction method based on the KNN-Prophet-LSTM hybrid model is established by using the daily pollutant concentration data of Wuhan from January 1, 2014, to May 3, 2021, and considering the characteristics of time and space. First, the data are divided into trend items, periodic it...
Autores principales: | Zhang, Biao, Song, Chao, Li, Ying, Jiang, Xuchu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712550/ https://www.ncbi.nlm.nih.gov/pubmed/36468093 http://dx.doi.org/10.1016/j.heliyon.2022.e11670 |
Ejemplares similares
-
Prediction of air pollutant concentrations based on TCN-BiLSTM-DMAttention with STL decomposition
por: Li, Wenlin, et al.
Publicado: (2023) -
Prediction of PM(2.5) concentration based on the CEEMDAN-RLMD-BiLSTM-LEC model
por: Guo, Qiao, et al.
Publicado: (2023) -
Energy consumption prediction using the GRU-MMattention-LightGBM model with features of Prophet decomposition
por: Liang, Shaokun, et al.
Publicado: (2023) -
The comparative analysis of SARIMA, Facebook Prophet, and LSTM for road traffic injury prediction in Northeast China
por: Feng, Tianyu, et al.
Publicado: (2022) -
Prediction of air quality index based on the SSA-BiLSTM-LightGBM model
por: Zhang, Xiaowen, et al.
Publicado: (2023)