Cargando…

Anti-neuroinflammatory effects of Cleistocalyx nervosum var. paniala berry-seed extract in BV-2 microglial cells via inhibition of MAPKs/NF-κB signaling pathway

Neuroinflammation is an essential contributor to multiple neurodegenerative disorders. Cleistocalyx nervosum var. paniala, an edible berry, has been reported to exhibit a neuroprotective effect. However, only limited research is available on this fruit seed, which is classified as agricultural food...

Descripción completa

Detalles Bibliográficos
Autores principales: Janpaijit, Sakawrat, Lertpatipanpong, Pattawika, Sillapachaiyaporn, Chanin, Baek, Seung Joon, Charoenkiatkul, Somsri, Tencomnao, Tewin, Sukprasansap, Monruedee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712567/
https://www.ncbi.nlm.nih.gov/pubmed/36468101
http://dx.doi.org/10.1016/j.heliyon.2022.e11869
Descripción
Sumario:Neuroinflammation is an essential contributor to multiple neurodegenerative disorders. Cleistocalyx nervosum var. paniala, an edible berry, has been reported to exhibit a neuroprotective effect. However, only limited research is available on this fruit seed, which is classified as agricultural food waste. We therefore focused on the anti-neuroinflammatory effects and mechanisms of C. nervosum var. paniala seed extract (CNSE) on lipopolysaccharide (LPS)-induced inflammatory response in BV-2 mouse microglial cells. HPLC analysis showed that CNSE consists of resveratrol (RESV). For cell-based studies, BV-2 cells were pre-treated with CNSE or RESV, followed by LPS. We found that CNSE and RESV inhibited LPS-induced inflammation in a dose-dependent manner. CNSE and RESV inhibited gene expression and activity of iNOS, leading to a decrease in nitric oxide production. Both CNSE and RESV suppressed the gene expression and the activities of TNF-α, IL-1β, and IL-6. Our results revealed that LPS stimulated the protein levels of MAPKs (JNK, ERK1/2, and p38), while pretreatment of cells with CNSE or RESV attenuated these proteins expressions. CNSE also suppressed NF-κB activation. These results suggest that CNSE and RESV can inhibit LPS-induced inflammatory response through MAPKs/NF-κB pathways in BV-2 cells. Taken together, CNSE have potential as a functional anti-neuroinflammatory agent.