Cargando…
Fibrin glue does not promote migration and proliferation of bone marrow derived mesenchymal stem cells in collagenic membranes: an in vitro study
During Autologous Matrix-Induced Chondrogenesis (AMIC), the membrane is often glued into the chondral defect. However, whether fibrin glue influences cells proliferation and migration remain unclear. This study evaluated the impact of fibrin glue addition to biologic membranes loaded with bone marro...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712600/ https://www.ncbi.nlm.nih.gov/pubmed/36450814 http://dx.doi.org/10.1038/s41598-022-25203-4 |
Sumario: | During Autologous Matrix-Induced Chondrogenesis (AMIC), the membrane is often glued into the chondral defect. However, whether fibrin glue influences cells proliferation and migration remain unclear. This study evaluated the impact of fibrin glue addition to biologic membranes loaded with bone marrow-derived mesenchymal stem cells (B-MSCs). A porcine derived collagen membrane (Cartimaix, Matricel GmbH, Germany) was used. B-MSCs were harvested from three different unrelated donors. The membranes were embedded in mounting medium with DAPI (ABCAM, Cambridge, UK) and analysed at 1-, 2-, 3-, 4-, 6-, and at 8-week follow-up. The DAPI ties the DNA of the cell nucleus, emitting blue fluorescence. DAPI/nuclei signals were analysed with fluorescence microscopy at 100-fold magnification. The group without fibrin glue demonstrated greater migration of the B-MSCs within the membrane at week 4 (P < 0.001), 6 (P < 0.001), and 8 (P < 0.001). No difference was found at week 1, 2, and 3. The group without fibrin glue demonstrated greater proliferation of B-MSCs within the membrane. These differences were significant at week 1 (P = 0.02), 2 (P = 0.008), 3 (P = 0.0009), 4 (P < 0.0001), 6 (P < 0.0001), 8 (P < 0.0001). Concluding, in the present setting, the use of fibrin in a collagenic biomembrane impairs B-MSCs proliferation and migration in vitro. |
---|