Cargando…
Insights into the quantification and reporting of model-related uncertainty across different disciplines
Quantifying uncertainty associated with our models is the only way we can express how much we know about any phenomenon. Incomplete consideration of model-based uncertainties can lead to overstated conclusions with real-world impacts in diverse spheres, including conservation, epidemiology, climate...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712693/ https://www.ncbi.nlm.nih.gov/pubmed/36465136 http://dx.doi.org/10.1016/j.isci.2022.105512 |
_version_ | 1784841844032536576 |
---|---|
author | Simmonds, Emily G. Adjei, Kwaku Peprah Andersen, Christoffer Wold Hetle Aspheim, Janne Cathrin Battistin, Claudia Bulso, Nicola Christensen, Hannah M. Cretois, Benjamin Cubero, Ryan Davidovich, Iván A. Dickel, Lisa Dunn, Benjamin Dunn-Sigouin, Etienne Dyrstad, Karin Einum, Sigurd Giglio, Donata Gjerløw, Haakon Godefroidt, Amélie González-Gil, Ricardo Gonzalo Cogno, Soledad Große, Fabian Halloran, Paul Jensen, Mari F. Kennedy, John James Langsæther, Peter Egge Laverick, Jack H. Lederberger, Debora Li, Camille Mandeville, Elizabeth G. Mandeville, Caitlin Moe, Espen Navarro Schröder, Tobias Nunan, David Sicacha-Parada, Jorge Simpson, Melanie Rae Skarstein, Emma Sofie Spensberger, Clemens Stevens, Richard Subramanian, Aneesh C. Svendsen, Lea Theisen, Ole Magnus Watret, Connor O’Hara, Robert B. |
author_facet | Simmonds, Emily G. Adjei, Kwaku Peprah Andersen, Christoffer Wold Hetle Aspheim, Janne Cathrin Battistin, Claudia Bulso, Nicola Christensen, Hannah M. Cretois, Benjamin Cubero, Ryan Davidovich, Iván A. Dickel, Lisa Dunn, Benjamin Dunn-Sigouin, Etienne Dyrstad, Karin Einum, Sigurd Giglio, Donata Gjerløw, Haakon Godefroidt, Amélie González-Gil, Ricardo Gonzalo Cogno, Soledad Große, Fabian Halloran, Paul Jensen, Mari F. Kennedy, John James Langsæther, Peter Egge Laverick, Jack H. Lederberger, Debora Li, Camille Mandeville, Elizabeth G. Mandeville, Caitlin Moe, Espen Navarro Schröder, Tobias Nunan, David Sicacha-Parada, Jorge Simpson, Melanie Rae Skarstein, Emma Sofie Spensberger, Clemens Stevens, Richard Subramanian, Aneesh C. Svendsen, Lea Theisen, Ole Magnus Watret, Connor O’Hara, Robert B. |
author_sort | Simmonds, Emily G. |
collection | PubMed |
description | Quantifying uncertainty associated with our models is the only way we can express how much we know about any phenomenon. Incomplete consideration of model-based uncertainties can lead to overstated conclusions with real-world impacts in diverse spheres, including conservation, epidemiology, climate science, and policy. Despite these potentially damaging consequences, we still know little about how different fields quantify and report uncertainty. We introduce the “sources of uncertainty” framework, using it to conduct a systematic audit of model-related uncertainty quantification from seven scientific fields, spanning the biological, physical, and political sciences. Our interdisciplinary audit shows no field fully considers all possible sources of uncertainty, but each has its own best practices alongside shared outstanding challenges. We make ten easy-to-implement recommendations to improve the consistency, completeness, and clarity of reporting on model-related uncertainty. These recommendations serve as a guide to best practices across scientific fields and expand our toolbox for high-quality research. |
format | Online Article Text |
id | pubmed-9712693 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-97126932022-12-02 Insights into the quantification and reporting of model-related uncertainty across different disciplines Simmonds, Emily G. Adjei, Kwaku Peprah Andersen, Christoffer Wold Hetle Aspheim, Janne Cathrin Battistin, Claudia Bulso, Nicola Christensen, Hannah M. Cretois, Benjamin Cubero, Ryan Davidovich, Iván A. Dickel, Lisa Dunn, Benjamin Dunn-Sigouin, Etienne Dyrstad, Karin Einum, Sigurd Giglio, Donata Gjerløw, Haakon Godefroidt, Amélie González-Gil, Ricardo Gonzalo Cogno, Soledad Große, Fabian Halloran, Paul Jensen, Mari F. Kennedy, John James Langsæther, Peter Egge Laverick, Jack H. Lederberger, Debora Li, Camille Mandeville, Elizabeth G. Mandeville, Caitlin Moe, Espen Navarro Schröder, Tobias Nunan, David Sicacha-Parada, Jorge Simpson, Melanie Rae Skarstein, Emma Sofie Spensberger, Clemens Stevens, Richard Subramanian, Aneesh C. Svendsen, Lea Theisen, Ole Magnus Watret, Connor O’Hara, Robert B. iScience Review Quantifying uncertainty associated with our models is the only way we can express how much we know about any phenomenon. Incomplete consideration of model-based uncertainties can lead to overstated conclusions with real-world impacts in diverse spheres, including conservation, epidemiology, climate science, and policy. Despite these potentially damaging consequences, we still know little about how different fields quantify and report uncertainty. We introduce the “sources of uncertainty” framework, using it to conduct a systematic audit of model-related uncertainty quantification from seven scientific fields, spanning the biological, physical, and political sciences. Our interdisciplinary audit shows no field fully considers all possible sources of uncertainty, but each has its own best practices alongside shared outstanding challenges. We make ten easy-to-implement recommendations to improve the consistency, completeness, and clarity of reporting on model-related uncertainty. These recommendations serve as a guide to best practices across scientific fields and expand our toolbox for high-quality research. Elsevier 2022-11-05 /pmc/articles/PMC9712693/ /pubmed/36465136 http://dx.doi.org/10.1016/j.isci.2022.105512 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Simmonds, Emily G. Adjei, Kwaku Peprah Andersen, Christoffer Wold Hetle Aspheim, Janne Cathrin Battistin, Claudia Bulso, Nicola Christensen, Hannah M. Cretois, Benjamin Cubero, Ryan Davidovich, Iván A. Dickel, Lisa Dunn, Benjamin Dunn-Sigouin, Etienne Dyrstad, Karin Einum, Sigurd Giglio, Donata Gjerløw, Haakon Godefroidt, Amélie González-Gil, Ricardo Gonzalo Cogno, Soledad Große, Fabian Halloran, Paul Jensen, Mari F. Kennedy, John James Langsæther, Peter Egge Laverick, Jack H. Lederberger, Debora Li, Camille Mandeville, Elizabeth G. Mandeville, Caitlin Moe, Espen Navarro Schröder, Tobias Nunan, David Sicacha-Parada, Jorge Simpson, Melanie Rae Skarstein, Emma Sofie Spensberger, Clemens Stevens, Richard Subramanian, Aneesh C. Svendsen, Lea Theisen, Ole Magnus Watret, Connor O’Hara, Robert B. Insights into the quantification and reporting of model-related uncertainty across different disciplines |
title | Insights into the quantification and reporting of model-related uncertainty across different disciplines |
title_full | Insights into the quantification and reporting of model-related uncertainty across different disciplines |
title_fullStr | Insights into the quantification and reporting of model-related uncertainty across different disciplines |
title_full_unstemmed | Insights into the quantification and reporting of model-related uncertainty across different disciplines |
title_short | Insights into the quantification and reporting of model-related uncertainty across different disciplines |
title_sort | insights into the quantification and reporting of model-related uncertainty across different disciplines |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712693/ https://www.ncbi.nlm.nih.gov/pubmed/36465136 http://dx.doi.org/10.1016/j.isci.2022.105512 |
work_keys_str_mv | AT simmondsemilyg insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT adjeikwakupeprah insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT andersenchristofferwold insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT hetleaspheimjannecathrin insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT battistinclaudia insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT bulsonicola insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT christensenhannahm insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT cretoisbenjamin insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT cuberoryan insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT davidovichivana insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT dickellisa insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT dunnbenjamin insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT dunnsigouinetienne insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT dyrstadkarin insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT einumsigurd insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT gigliodonata insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT gjerløwhaakon insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT godefroidtamelie insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT gonzalezgilricardo insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT gonzalocognosoledad insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT großefabian insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT halloranpaul insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT jensenmarif insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT kennedyjohnjames insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT langsætherpeteregge insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT laverickjackh insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT lederbergerdebora insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT licamille insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT mandevilleelizabethg insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT mandevillecaitlin insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT moeespen insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT navarroschrodertobias insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT nunandavid insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT sicachaparadajorge insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT simpsonmelanierae insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT skarsteinemmasofie insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT spensbergerclemens insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT stevensrichard insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT subramaniananeeshc insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT svendsenlea insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT theisenolemagnus insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT watretconnor insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines AT ohararobertb insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines |