Cargando…

Insights into the quantification and reporting of model-related uncertainty across different disciplines

Quantifying uncertainty associated with our models is the only way we can express how much we know about any phenomenon. Incomplete consideration of model-based uncertainties can lead to overstated conclusions with real-world impacts in diverse spheres, including conservation, epidemiology, climate...

Descripción completa

Detalles Bibliográficos
Autores principales: Simmonds, Emily G., Adjei, Kwaku Peprah, Andersen, Christoffer Wold, Hetle Aspheim, Janne Cathrin, Battistin, Claudia, Bulso, Nicola, Christensen, Hannah M., Cretois, Benjamin, Cubero, Ryan, Davidovich, Iván A., Dickel, Lisa, Dunn, Benjamin, Dunn-Sigouin, Etienne, Dyrstad, Karin, Einum, Sigurd, Giglio, Donata, Gjerløw, Haakon, Godefroidt, Amélie, González-Gil, Ricardo, Gonzalo Cogno, Soledad, Große, Fabian, Halloran, Paul, Jensen, Mari F., Kennedy, John James, Langsæther, Peter Egge, Laverick, Jack H., Lederberger, Debora, Li, Camille, Mandeville, Elizabeth G., Mandeville, Caitlin, Moe, Espen, Navarro Schröder, Tobias, Nunan, David, Sicacha-Parada, Jorge, Simpson, Melanie Rae, Skarstein, Emma Sofie, Spensberger, Clemens, Stevens, Richard, Subramanian, Aneesh C., Svendsen, Lea, Theisen, Ole Magnus, Watret, Connor, O’Hara, Robert B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712693/
https://www.ncbi.nlm.nih.gov/pubmed/36465136
http://dx.doi.org/10.1016/j.isci.2022.105512
_version_ 1784841844032536576
author Simmonds, Emily G.
Adjei, Kwaku Peprah
Andersen, Christoffer Wold
Hetle Aspheim, Janne Cathrin
Battistin, Claudia
Bulso, Nicola
Christensen, Hannah M.
Cretois, Benjamin
Cubero, Ryan
Davidovich, Iván A.
Dickel, Lisa
Dunn, Benjamin
Dunn-Sigouin, Etienne
Dyrstad, Karin
Einum, Sigurd
Giglio, Donata
Gjerløw, Haakon
Godefroidt, Amélie
González-Gil, Ricardo
Gonzalo Cogno, Soledad
Große, Fabian
Halloran, Paul
Jensen, Mari F.
Kennedy, John James
Langsæther, Peter Egge
Laverick, Jack H.
Lederberger, Debora
Li, Camille
Mandeville, Elizabeth G.
Mandeville, Caitlin
Moe, Espen
Navarro Schröder, Tobias
Nunan, David
Sicacha-Parada, Jorge
Simpson, Melanie Rae
Skarstein, Emma Sofie
Spensberger, Clemens
Stevens, Richard
Subramanian, Aneesh C.
Svendsen, Lea
Theisen, Ole Magnus
Watret, Connor
O’Hara, Robert B.
author_facet Simmonds, Emily G.
Adjei, Kwaku Peprah
Andersen, Christoffer Wold
Hetle Aspheim, Janne Cathrin
Battistin, Claudia
Bulso, Nicola
Christensen, Hannah M.
Cretois, Benjamin
Cubero, Ryan
Davidovich, Iván A.
Dickel, Lisa
Dunn, Benjamin
Dunn-Sigouin, Etienne
Dyrstad, Karin
Einum, Sigurd
Giglio, Donata
Gjerløw, Haakon
Godefroidt, Amélie
González-Gil, Ricardo
Gonzalo Cogno, Soledad
Große, Fabian
Halloran, Paul
Jensen, Mari F.
Kennedy, John James
Langsæther, Peter Egge
Laverick, Jack H.
Lederberger, Debora
Li, Camille
Mandeville, Elizabeth G.
Mandeville, Caitlin
Moe, Espen
Navarro Schröder, Tobias
Nunan, David
Sicacha-Parada, Jorge
Simpson, Melanie Rae
Skarstein, Emma Sofie
Spensberger, Clemens
Stevens, Richard
Subramanian, Aneesh C.
Svendsen, Lea
Theisen, Ole Magnus
Watret, Connor
O’Hara, Robert B.
author_sort Simmonds, Emily G.
collection PubMed
description Quantifying uncertainty associated with our models is the only way we can express how much we know about any phenomenon. Incomplete consideration of model-based uncertainties can lead to overstated conclusions with real-world impacts in diverse spheres, including conservation, epidemiology, climate science, and policy. Despite these potentially damaging consequences, we still know little about how different fields quantify and report uncertainty. We introduce the “sources of uncertainty” framework, using it to conduct a systematic audit of model-related uncertainty quantification from seven scientific fields, spanning the biological, physical, and political sciences. Our interdisciplinary audit shows no field fully considers all possible sources of uncertainty, but each has its own best practices alongside shared outstanding challenges. We make ten easy-to-implement recommendations to improve the consistency, completeness, and clarity of reporting on model-related uncertainty. These recommendations serve as a guide to best practices across scientific fields and expand our toolbox for high-quality research.
format Online
Article
Text
id pubmed-9712693
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-97126932022-12-02 Insights into the quantification and reporting of model-related uncertainty across different disciplines Simmonds, Emily G. Adjei, Kwaku Peprah Andersen, Christoffer Wold Hetle Aspheim, Janne Cathrin Battistin, Claudia Bulso, Nicola Christensen, Hannah M. Cretois, Benjamin Cubero, Ryan Davidovich, Iván A. Dickel, Lisa Dunn, Benjamin Dunn-Sigouin, Etienne Dyrstad, Karin Einum, Sigurd Giglio, Donata Gjerløw, Haakon Godefroidt, Amélie González-Gil, Ricardo Gonzalo Cogno, Soledad Große, Fabian Halloran, Paul Jensen, Mari F. Kennedy, John James Langsæther, Peter Egge Laverick, Jack H. Lederberger, Debora Li, Camille Mandeville, Elizabeth G. Mandeville, Caitlin Moe, Espen Navarro Schröder, Tobias Nunan, David Sicacha-Parada, Jorge Simpson, Melanie Rae Skarstein, Emma Sofie Spensberger, Clemens Stevens, Richard Subramanian, Aneesh C. Svendsen, Lea Theisen, Ole Magnus Watret, Connor O’Hara, Robert B. iScience Review Quantifying uncertainty associated with our models is the only way we can express how much we know about any phenomenon. Incomplete consideration of model-based uncertainties can lead to overstated conclusions with real-world impacts in diverse spheres, including conservation, epidemiology, climate science, and policy. Despite these potentially damaging consequences, we still know little about how different fields quantify and report uncertainty. We introduce the “sources of uncertainty” framework, using it to conduct a systematic audit of model-related uncertainty quantification from seven scientific fields, spanning the biological, physical, and political sciences. Our interdisciplinary audit shows no field fully considers all possible sources of uncertainty, but each has its own best practices alongside shared outstanding challenges. We make ten easy-to-implement recommendations to improve the consistency, completeness, and clarity of reporting on model-related uncertainty. These recommendations serve as a guide to best practices across scientific fields and expand our toolbox for high-quality research. Elsevier 2022-11-05 /pmc/articles/PMC9712693/ /pubmed/36465136 http://dx.doi.org/10.1016/j.isci.2022.105512 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Simmonds, Emily G.
Adjei, Kwaku Peprah
Andersen, Christoffer Wold
Hetle Aspheim, Janne Cathrin
Battistin, Claudia
Bulso, Nicola
Christensen, Hannah M.
Cretois, Benjamin
Cubero, Ryan
Davidovich, Iván A.
Dickel, Lisa
Dunn, Benjamin
Dunn-Sigouin, Etienne
Dyrstad, Karin
Einum, Sigurd
Giglio, Donata
Gjerløw, Haakon
Godefroidt, Amélie
González-Gil, Ricardo
Gonzalo Cogno, Soledad
Große, Fabian
Halloran, Paul
Jensen, Mari F.
Kennedy, John James
Langsæther, Peter Egge
Laverick, Jack H.
Lederberger, Debora
Li, Camille
Mandeville, Elizabeth G.
Mandeville, Caitlin
Moe, Espen
Navarro Schröder, Tobias
Nunan, David
Sicacha-Parada, Jorge
Simpson, Melanie Rae
Skarstein, Emma Sofie
Spensberger, Clemens
Stevens, Richard
Subramanian, Aneesh C.
Svendsen, Lea
Theisen, Ole Magnus
Watret, Connor
O’Hara, Robert B.
Insights into the quantification and reporting of model-related uncertainty across different disciplines
title Insights into the quantification and reporting of model-related uncertainty across different disciplines
title_full Insights into the quantification and reporting of model-related uncertainty across different disciplines
title_fullStr Insights into the quantification and reporting of model-related uncertainty across different disciplines
title_full_unstemmed Insights into the quantification and reporting of model-related uncertainty across different disciplines
title_short Insights into the quantification and reporting of model-related uncertainty across different disciplines
title_sort insights into the quantification and reporting of model-related uncertainty across different disciplines
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712693/
https://www.ncbi.nlm.nih.gov/pubmed/36465136
http://dx.doi.org/10.1016/j.isci.2022.105512
work_keys_str_mv AT simmondsemilyg insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT adjeikwakupeprah insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT andersenchristofferwold insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT hetleaspheimjannecathrin insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT battistinclaudia insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT bulsonicola insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT christensenhannahm insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT cretoisbenjamin insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT cuberoryan insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT davidovichivana insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT dickellisa insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT dunnbenjamin insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT dunnsigouinetienne insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT dyrstadkarin insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT einumsigurd insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT gigliodonata insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT gjerløwhaakon insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT godefroidtamelie insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT gonzalezgilricardo insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT gonzalocognosoledad insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT großefabian insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT halloranpaul insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT jensenmarif insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT kennedyjohnjames insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT langsætherpeteregge insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT laverickjackh insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT lederbergerdebora insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT licamille insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT mandevilleelizabethg insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT mandevillecaitlin insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT moeespen insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT navarroschrodertobias insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT nunandavid insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT sicachaparadajorge insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT simpsonmelanierae insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT skarsteinemmasofie insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT spensbergerclemens insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT stevensrichard insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT subramaniananeeshc insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT svendsenlea insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT theisenolemagnus insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT watretconnor insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines
AT ohararobertb insightsintothequantificationandreportingofmodelrelateduncertaintyacrossdifferentdisciplines