Cargando…
A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis
Mathematical models of cardiac electrical activity are one of the most important tools for elucidating information about heart diagnostics. In this paper, we present an efficient mathematical formulation for this modeling simple enough to be easily parameterized and rich enough to provide realistic...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712771/ https://www.ncbi.nlm.nih.gov/pubmed/36465104 http://dx.doi.org/10.1016/j.isci.2022.105617 |
_version_ | 1784841861653856256 |
---|---|
author | Rueda, Cristina Rodríguez-Collado, Alejandro Fernández, Itziar Canedo, Christian Ugarte, María Dolores Larriba, Yolanda |
author_facet | Rueda, Cristina Rodríguez-Collado, Alejandro Fernández, Itziar Canedo, Christian Ugarte, María Dolores Larriba, Yolanda |
author_sort | Rueda, Cristina |
collection | PubMed |
description | Mathematical models of cardiac electrical activity are one of the most important tools for elucidating information about heart diagnostics. In this paper, we present an efficient mathematical formulation for this modeling simple enough to be easily parameterized and rich enough to provide realistic signals. It relies on a five dipole representation of the cardiac electric source, each one associated with the well-known waves of the electrocardiogram signal. Beyond the physical basis of the model, the parameters are physiologically interpretable as they characterize the wave shape, similar to what a physician would look for in signals, thus making them very useful in diagnosis. The model accurately reproduces the electrocardiogram signals of any diseased or healthy heart. This new discovery represents a significant advance in electrocardiography research. It is especially useful for diagnosis, patient follow-up or decision-making on new therapies; is also a promising tool for well-performing, transparent and interpretable AI approaches. |
format | Online Article Text |
id | pubmed-9712771 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-97127712022-12-02 A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis Rueda, Cristina Rodríguez-Collado, Alejandro Fernández, Itziar Canedo, Christian Ugarte, María Dolores Larriba, Yolanda iScience Article Mathematical models of cardiac electrical activity are one of the most important tools for elucidating information about heart diagnostics. In this paper, we present an efficient mathematical formulation for this modeling simple enough to be easily parameterized and rich enough to provide realistic signals. It relies on a five dipole representation of the cardiac electric source, each one associated with the well-known waves of the electrocardiogram signal. Beyond the physical basis of the model, the parameters are physiologically interpretable as they characterize the wave shape, similar to what a physician would look for in signals, thus making them very useful in diagnosis. The model accurately reproduces the electrocardiogram signals of any diseased or healthy heart. This new discovery represents a significant advance in electrocardiography research. It is especially useful for diagnosis, patient follow-up or decision-making on new therapies; is also a promising tool for well-performing, transparent and interpretable AI approaches. Elsevier 2022-11-21 /pmc/articles/PMC9712771/ /pubmed/36465104 http://dx.doi.org/10.1016/j.isci.2022.105617 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Rueda, Cristina Rodríguez-Collado, Alejandro Fernández, Itziar Canedo, Christian Ugarte, María Dolores Larriba, Yolanda A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis |
title | A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis |
title_full | A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis |
title_fullStr | A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis |
title_full_unstemmed | A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis |
title_short | A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis |
title_sort | unique cardiac electrocardiographic 3d model. toward interpretable ai diagnosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712771/ https://www.ncbi.nlm.nih.gov/pubmed/36465104 http://dx.doi.org/10.1016/j.isci.2022.105617 |
work_keys_str_mv | AT ruedacristina auniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis AT rodriguezcolladoalejandro auniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis AT fernandezitziar auniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis AT canedochristian auniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis AT ugartemariadolores auniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis AT larribayolanda auniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis AT ruedacristina uniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis AT rodriguezcolladoalejandro uniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis AT fernandezitziar uniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis AT canedochristian uniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis AT ugartemariadolores uniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis AT larribayolanda uniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis |