Cargando…

A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis

Mathematical models of cardiac electrical activity are one of the most important tools for elucidating information about heart diagnostics. In this paper, we present an efficient mathematical formulation for this modeling simple enough to be easily parameterized and rich enough to provide realistic...

Descripción completa

Detalles Bibliográficos
Autores principales: Rueda, Cristina, Rodríguez-Collado, Alejandro, Fernández, Itziar, Canedo, Christian, Ugarte, María Dolores, Larriba, Yolanda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712771/
https://www.ncbi.nlm.nih.gov/pubmed/36465104
http://dx.doi.org/10.1016/j.isci.2022.105617
_version_ 1784841861653856256
author Rueda, Cristina
Rodríguez-Collado, Alejandro
Fernández, Itziar
Canedo, Christian
Ugarte, María Dolores
Larriba, Yolanda
author_facet Rueda, Cristina
Rodríguez-Collado, Alejandro
Fernández, Itziar
Canedo, Christian
Ugarte, María Dolores
Larriba, Yolanda
author_sort Rueda, Cristina
collection PubMed
description Mathematical models of cardiac electrical activity are one of the most important tools for elucidating information about heart diagnostics. In this paper, we present an efficient mathematical formulation for this modeling simple enough to be easily parameterized and rich enough to provide realistic signals. It relies on a five dipole representation of the cardiac electric source, each one associated with the well-known waves of the electrocardiogram signal. Beyond the physical basis of the model, the parameters are physiologically interpretable as they characterize the wave shape, similar to what a physician would look for in signals, thus making them very useful in diagnosis. The model accurately reproduces the electrocardiogram signals of any diseased or healthy heart. This new discovery represents a significant advance in electrocardiography research. It is especially useful for diagnosis, patient follow-up or decision-making on new therapies; is also a promising tool for well-performing, transparent and interpretable AI approaches.
format Online
Article
Text
id pubmed-9712771
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-97127712022-12-02 A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis Rueda, Cristina Rodríguez-Collado, Alejandro Fernández, Itziar Canedo, Christian Ugarte, María Dolores Larriba, Yolanda iScience Article Mathematical models of cardiac electrical activity are one of the most important tools for elucidating information about heart diagnostics. In this paper, we present an efficient mathematical formulation for this modeling simple enough to be easily parameterized and rich enough to provide realistic signals. It relies on a five dipole representation of the cardiac electric source, each one associated with the well-known waves of the electrocardiogram signal. Beyond the physical basis of the model, the parameters are physiologically interpretable as they characterize the wave shape, similar to what a physician would look for in signals, thus making them very useful in diagnosis. The model accurately reproduces the electrocardiogram signals of any diseased or healthy heart. This new discovery represents a significant advance in electrocardiography research. It is especially useful for diagnosis, patient follow-up or decision-making on new therapies; is also a promising tool for well-performing, transparent and interpretable AI approaches. Elsevier 2022-11-21 /pmc/articles/PMC9712771/ /pubmed/36465104 http://dx.doi.org/10.1016/j.isci.2022.105617 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Rueda, Cristina
Rodríguez-Collado, Alejandro
Fernández, Itziar
Canedo, Christian
Ugarte, María Dolores
Larriba, Yolanda
A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis
title A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis
title_full A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis
title_fullStr A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis
title_full_unstemmed A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis
title_short A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis
title_sort unique cardiac electrocardiographic 3d model. toward interpretable ai diagnosis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712771/
https://www.ncbi.nlm.nih.gov/pubmed/36465104
http://dx.doi.org/10.1016/j.isci.2022.105617
work_keys_str_mv AT ruedacristina auniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis
AT rodriguezcolladoalejandro auniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis
AT fernandezitziar auniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis
AT canedochristian auniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis
AT ugartemariadolores auniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis
AT larribayolanda auniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis
AT ruedacristina uniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis
AT rodriguezcolladoalejandro uniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis
AT fernandezitziar uniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis
AT canedochristian uniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis
AT ugartemariadolores uniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis
AT larribayolanda uniquecardiacelectrocardiographic3dmodeltowardinterpretableaidiagnosis