Cargando…
Abnormal resting-state functional connectome in methamphetamine-dependent patients and its application in machine-learning-based classification
Brain resting-state functional connectivity (rsFC) has been widely analyzed in substance use disorders (SUDs), including methamphetamine (MA) dependence. Most of these studies utilized Pearson correlation analysis to assess rsFC, which cannot determine whether two brain regions are connected by dire...
Autores principales: | Li, Yadi, Cheng, Ping, Liang, Liang, Dong, Haibo, Liu, Huifen, Shen, Wenwen, Zhou, Wenhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9713007/ https://www.ncbi.nlm.nih.gov/pubmed/36466158 http://dx.doi.org/10.3389/fnins.2022.1014539 |
Ejemplares similares
-
Aberrant topology of white matter networks in patients with methamphetamine dependence and its application in support vector machine-based classification
por: Cheng, Ping, et al.
Publicado: (2023) -
Constructing the resting state structural connectome
por: Ajilore, Olusola, et al.
Publicado: (2013) -
Feeding the machine: Challenges to reproducible predictive modeling in resting-state connectomics
por: Cwiek, Andrew, et al.
Publicado: (2022) -
Machine learning classification of resting state functional connectivity predicts smoking status
por: Pariyadath, Vani, et al.
Publicado: (2014) -
Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands
por: Deligianni, Fani, et al.
Publicado: (2014)