Cargando…
RLFDDA: a meta-path based graph representation learning model for drug–disease association prediction
BACKGROUND: Drug repositioning is a very important task that provides critical information for exploring the potential efficacy of drugs. Yet developing computational models that can effectively predict drug–disease associations (DDAs) is still a challenging task. Previous studies suggest that the a...
Autores principales: | Zhang, Meng-Long, Zhao, Bo-Wei, Su, Xiao-Rui, He, Yi-Zhou, Yang, Yue, Hu, Lun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9713188/ https://www.ncbi.nlm.nih.gov/pubmed/36456957 http://dx.doi.org/10.1186/s12859-022-05069-z |
Ejemplares similares
-
iGRLDTI: an improved graph representation learning method for predicting drug–target interactions over heterogeneous biological information network
por: Zhao, Bo-Wei, et al.
Publicado: (2023) -
A Novel Method to Predict Drug-Target Interactions Based on Large-Scale Graph Representation Learning
por: Zhao, Bo-Wei, et al.
Publicado: (2021) -
Graph representation learning
por: Hamilton, William L
Publicado: (2020) -
MGRL: Predicting Drug-Disease Associations Based on Multi-Graph Representation Learning
por: Zhao, Bo-Wei, et al.
Publicado: (2021) -
Text-Graph Enhanced Knowledge Graph Representation Learning
por: Hu, Linmei, et al.
Publicado: (2021)