Cargando…
Modern Hopfield Networks for graph embedding
The network embedding task is to represent a node in a network as a low-dimensional vector while incorporating the topological and structural information. Most existing approaches solve this problem by factorizing a proximity matrix, either directly or implicitly. In this work, we introduce a networ...
Autores principales: | Liang, Yuchen, Krotov, Dmitry, Zaki, Mohammed J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9713410/ https://www.ncbi.nlm.nih.gov/pubmed/36466714 http://dx.doi.org/10.3389/fdata.2022.1044709 |
Ejemplares similares
-
MedGraph: A semantic biomedical information retrieval framework using knowledge graph embedding for PubMed
por: Ebeid, Islam Akef
Publicado: (2022) -
Proximity-Based Compression for Network Embedding
por: Islam, Muhammad Ifte, et al.
Publicado: (2021) -
Fast and adaptive dynamics-on-graphs to dynamics-of-graphs translation
por: Zhang, Lei, et al.
Publicado: (2023) -
Recipe Recommendation With Hierarchical Graph Attention Network
por: Tian, Yijun, et al.
Publicado: (2022) -
Graph Neural Networks for Charged Particle Tracking on FPGAs
por: Elabd, Abdelrahman, et al.
Publicado: (2022)