Cargando…

Cryo‐EM structures of perforin‐2 in isolation and assembled on a membrane suggest a mechanism for pore formation

Perforin‐2 (PFN2, MPEG1) is a key pore‐forming protein in mammalian innate immunity restricting intracellular bacteria proliferation. It forms a membrane‐bound pre‐pore complex that converts to a pore‐forming structure upon acidification; but its mechanism of conformational transition has been debat...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Xiulian, Ni, Tao, Munson, George, Zhang, Peijun, Gilbert, Robert J C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9713709/
https://www.ncbi.nlm.nih.gov/pubmed/36245269
http://dx.doi.org/10.15252/embj.2022111857
Descripción
Sumario:Perforin‐2 (PFN2, MPEG1) is a key pore‐forming protein in mammalian innate immunity restricting intracellular bacteria proliferation. It forms a membrane‐bound pre‐pore complex that converts to a pore‐forming structure upon acidification; but its mechanism of conformational transition has been debated. Here we used cryo‐electron microscopy, tomography and subtomogram averaging to determine structures of PFN2 in pre‐pore and pore conformations in isolation and bound to liposomes. In isolation and upon acidification, the pre‐assembled complete pre‐pore rings convert to pores in both flat ring and twisted conformations. On membranes, in situ assembled PFN2 pre‐pores display various degrees of completeness; whereas PFN2 pores are mainly incomplete arc structures that follow the same subunit packing arrangements as found in isolation. Both assemblies on membranes use their P2 β‐hairpin for binding to the lipid membrane surface. Overall, these structural snapshots suggest a molecular mechanism for PFN2 pre‐pore to pore transition on a targeted membrane, potentially using the twisted pore as an intermediate or alternative state to the flat conformation, with the capacity to cause bilayer distortion during membrane insertion.