Cargando…
Deep learning-based predictions of older adults' adherence to cognitive training to support training efficacy
As the population ages, the number of older adults experiencing mild cognitive impairment (MCI), Alzheimer's disease, and other forms of dementia will increase dramatically over the next few decades. Unfortunately, cognitive changes associated with these conditions threaten independence and qua...
Autores principales: | Singh, Ankita, Chakraborty, Shayok, He, Zhe, Tian, Shubo, Zhang, Shenghao, Lustria, Mia Liza A., Charness, Neil, Roque, Nelson A., Harrell, Erin R., Boot, Walter R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9713845/ https://www.ncbi.nlm.nih.gov/pubmed/36467206 http://dx.doi.org/10.3389/fpsyg.2022.980778 |
Ejemplares similares
-
An Introduction to the Adherence Promotion With Person-Centered Technology Project
por: Dieciuc, Michael, et al.
Publicado: (2020) -
Aims of the Adherence Promotion With Person-Centered Technology (APPT) Project
por: Charness, Neil, et al.
Publicado: (2021) -
Older Adults’ Adherence to Technology-Based Intervention: The Role of Messaging and Individual Differences
por: Boot, Walter, et al.
Publicado: (2020) -
Machine Learning Approaches to Understanding and Predicting Patterns of Adherence
por: Chakraborty, Shayok, et al.
Publicado: (2021) -
Exploring Factors that Shape Adherence to Technology-Based Cognitive Interventions
por: Harrell, Erin, et al.
Publicado: (2021)