Cargando…
Single-Ion Magnets with Giant Magnetic Anisotropy and Zero-Field Splitting
[Image: see text] The design of mononuclear molecular nanomagnets exhibiting a huge energy barrier to the reversal of magnetization have seen a surge of interest during the last few decades due to their potential technological applications. More specifically, single-ion magnets are peculiarly attrac...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9713882/ https://www.ncbi.nlm.nih.gov/pubmed/36467950 http://dx.doi.org/10.1021/acsomega.2c06119 |
_version_ | 1784842109461725184 |
---|---|
author | Georgiev, Miroslav Chamati, Hassan |
author_facet | Georgiev, Miroslav Chamati, Hassan |
author_sort | Georgiev, Miroslav |
collection | PubMed |
description | [Image: see text] The design of mononuclear molecular nanomagnets exhibiting a huge energy barrier to the reversal of magnetization have seen a surge of interest during the last few decades due to their potential technological applications. More specifically, single-ion magnets are peculiarly attractive by virtue of their rich quantum behavior and distinct fine structure. These are viable candidates for implementation as single-molecule high-density information storage devices and other applications in future quantum technologies. The present review presents the comprehensive state of the art in the topic of single-ion magnets possessing an eminent magnetization-reversal barrier, very slow magnetic relaxation and high blocking temperature. We turn our attention to the achievements in the synthesis of 3d and 4f single-ion magnets during the last two decades and discuss the observed magnetostructural properties underlying the anisotropy behavior and the ensuing remanence. Furthermore, we highlight the fundamental theoretical aspects to shed light on the complex behavior of these nanosized magnetic entities. In particular, we focus on key notions, such as zero-field splitting, anisotropy energy and quantum tunneling of the magnetization and their interdependence. |
format | Online Article Text |
id | pubmed-9713882 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-97138822022-12-02 Single-Ion Magnets with Giant Magnetic Anisotropy and Zero-Field Splitting Georgiev, Miroslav Chamati, Hassan ACS Omega [Image: see text] The design of mononuclear molecular nanomagnets exhibiting a huge energy barrier to the reversal of magnetization have seen a surge of interest during the last few decades due to their potential technological applications. More specifically, single-ion magnets are peculiarly attractive by virtue of their rich quantum behavior and distinct fine structure. These are viable candidates for implementation as single-molecule high-density information storage devices and other applications in future quantum technologies. The present review presents the comprehensive state of the art in the topic of single-ion magnets possessing an eminent magnetization-reversal barrier, very slow magnetic relaxation and high blocking temperature. We turn our attention to the achievements in the synthesis of 3d and 4f single-ion magnets during the last two decades and discuss the observed magnetostructural properties underlying the anisotropy behavior and the ensuing remanence. Furthermore, we highlight the fundamental theoretical aspects to shed light on the complex behavior of these nanosized magnetic entities. In particular, we focus on key notions, such as zero-field splitting, anisotropy energy and quantum tunneling of the magnetization and their interdependence. American Chemical Society 2022-11-15 /pmc/articles/PMC9713882/ /pubmed/36467950 http://dx.doi.org/10.1021/acsomega.2c06119 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Georgiev, Miroslav Chamati, Hassan Single-Ion Magnets with Giant Magnetic Anisotropy and Zero-Field Splitting |
title | Single-Ion Magnets with Giant Magnetic Anisotropy
and Zero-Field Splitting |
title_full | Single-Ion Magnets with Giant Magnetic Anisotropy
and Zero-Field Splitting |
title_fullStr | Single-Ion Magnets with Giant Magnetic Anisotropy
and Zero-Field Splitting |
title_full_unstemmed | Single-Ion Magnets with Giant Magnetic Anisotropy
and Zero-Field Splitting |
title_short | Single-Ion Magnets with Giant Magnetic Anisotropy
and Zero-Field Splitting |
title_sort | single-ion magnets with giant magnetic anisotropy
and zero-field splitting |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9713882/ https://www.ncbi.nlm.nih.gov/pubmed/36467950 http://dx.doi.org/10.1021/acsomega.2c06119 |
work_keys_str_mv | AT georgievmiroslav singleionmagnetswithgiantmagneticanisotropyandzerofieldsplitting AT chamatihassan singleionmagnetswithgiantmagneticanisotropyandzerofieldsplitting |