Cargando…
Artificial Neural Network Model for the Prediction of Thermal Conductivity of Saturated Liquid Refrigerants and n-Alkanes
[Image: see text] In this paper, a feed-forward back-propagation artificial neural network (ANN) is proposed to correlate and predict the thermal conductivity from the triple point temperature up to 0.98 times critical temperature (T(c)) for 23 refrigerants and 11 n-alkanes. It requires the temperat...
Autores principales: | Meng, Xiangsheng, Yang, Shangguo, Tian, Jianxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9713888/ https://www.ncbi.nlm.nih.gov/pubmed/36467959 http://dx.doi.org/10.1021/acsomega.2c05537 |
Ejemplares similares
-
Prediction of the Thermal Conductivity of Refrigerants by Computational Methods and Artificial Neural Network
por: Ghaderi, Forouzan, et al.
Publicado: (2017) -
Surface Tension for Silanes, Refrigerants, and Carboxylic
Acids: Simple Corresponding State Correlations versus DIPPR Data
por: Yang, Shangguo, et al.
Publicado: (2021) -
Enhanced thermal conductance at the graphene–water interface based on functionalized alkane chains
por: Chen, Shuyu, et al.
Publicado: (2019) -
Correction: Enhanced thermal conductance at the graphene–water interface based on functionalized alkane chains
por: Chen, Shuyu, et al.
Publicado: (2019) -
Thermal Conductivity of Saturated Liquid Toluene by Use of Anodized Tantalum Hot Wires at High Temperatures
por: Perkins, R. A., et al.
Publicado: (2000)