Cargando…

Performance of antigen detection for HRP2-based malaria rapid diagnostic tests in community surveys: Tanzania, July–November 2017

BACKGROUND: Malaria rapid diagnostic tests (RDTs) based on the detection of the Plasmodium falciparum histidine-rich protein 2 (HRP2) antigen are widely used for detection of active infection with this parasite and are the only practical malaria diagnostic test in some endemic settings. External val...

Descripción completa

Detalles Bibliográficos
Autores principales: Rogier, Eric, Bakari, Catherine, Mandara, Celine I., Chiduo, Mercy G., Plucinski, Mateusz, Nace, Douglas, Battle, Nastassia, Chacky, Franky, Rumisha, Susan F., Molteni, Fabrizio, Mandike, Renata, Mkude, Sigsbert, Njau, Ritha, Mohamed, Ally, Udhayakumar, Venkatachalam, Ishengoma, Deus S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714097/
https://www.ncbi.nlm.nih.gov/pubmed/36457087
http://dx.doi.org/10.1186/s12936-022-04383-4
Descripción
Sumario:BACKGROUND: Malaria rapid diagnostic tests (RDTs) based on the detection of the Plasmodium falciparum histidine-rich protein 2 (HRP2) antigen are widely used for detection of active infection with this parasite and are the only practical malaria diagnostic test in some endemic settings. External validation of RDT results from field surveys can confirm appropriate RDT performance. METHODS: A community-based cross-sectional survey was conducted between July and November 2017 enrolling participants of all ages in households from 15 villages in four border regions of Tanzania: Geita, Kigoma, Mtwara and Ruvuma. All participants had an RDT performed in the field and provided a blood sample for later laboratory multiplex antigen detection of HRP2. In assessing the continuous HRP2 levels in participant blood versus RDT result, dose–response logistic regression provided quantitative estimates for HRP2 limit of detection (LOD). RESULTS: From the 15 study villages, 6941 persons were enrolled that had a RDT at time of enrollment and provided a DBS for later laboratory antigen detection. RDT positive prevalence for the HRP2 band by village ranged from 20.0 to 43.6%, but the magnitude of this prevalence did not have an effect on the estimated LOD of RDTs utilized in different villages. Overall, HRP2 single-target tests had a lower LOD at the 95% probability of positive RDT (4.3 ng/mL; 95% CI 3.4–5.4) when compared to pLDH/HRP2 dual target tests (5.4 ng/mL; 4.5–6.3), though this difference was not significant. With the exception of one village, all other 14 villages (93.3%) showed RDT LOD estimates at 90% probability of positive RDT between 0.5 and 12.0 ng/mL. CONCLUSIONS: Both HRP2-only and pLDH/HRP2 combo RDTs utilized in a 2017 Tanzania cross-sectional survey of border regions generally performed well, and reliably detected HRP2 antigen in the low ng/mL range. Though single target tests had lower levels of HRP2 detection, both tests were within similar ranges among the 15 villages. Comparison of quantitative HRP2 detection limits among study sites can help interpret RDT testing results when generating population prevalence estimates for malaria infection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12936-022-04383-4.