Cargando…
Right ventricular energetic biomarkers from 4D Flow CMR are associated with exertional capacity in pulmonary arterial hypertension
BACKGROUND: Cardiovascular magnetic resonance (CMR) offers comprehensive right ventricular (RV) evaluation in pulmonary arterial hypertension (PAH). Emerging four-dimensional (4D) flow CMR allows visualization and quantification of intracardiac flow components and calculation of phasic blood kinetic...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714144/ https://www.ncbi.nlm.nih.gov/pubmed/36451198 http://dx.doi.org/10.1186/s12968-022-00896-8 |
_version_ | 1784842159875162112 |
---|---|
author | Zhao, Xiaodan Leng, Shuang Tan, Ru-San Chai, Ping Yeo, Tee Joo Bryant, Jennifer Ann Teo, Lynette L. S. Fortier, Marielle V. Ruan, Wen Low, Ting Ting Ong, Ching Ching Zhang, Shuo van der Geest, Rob J. Allen, John C. Hughes, Marina Garg, Pankaj Tan, Teng Hong Yip, James W. Tan, Ju Le Zhong, Liang |
author_facet | Zhao, Xiaodan Leng, Shuang Tan, Ru-San Chai, Ping Yeo, Tee Joo Bryant, Jennifer Ann Teo, Lynette L. S. Fortier, Marielle V. Ruan, Wen Low, Ting Ting Ong, Ching Ching Zhang, Shuo van der Geest, Rob J. Allen, John C. Hughes, Marina Garg, Pankaj Tan, Teng Hong Yip, James W. Tan, Ju Le Zhong, Liang |
author_sort | Zhao, Xiaodan |
collection | PubMed |
description | BACKGROUND: Cardiovascular magnetic resonance (CMR) offers comprehensive right ventricular (RV) evaluation in pulmonary arterial hypertension (PAH). Emerging four-dimensional (4D) flow CMR allows visualization and quantification of intracardiac flow components and calculation of phasic blood kinetic energy (KE) parameters but it is unknown whether these parameters are associated with cardiopulmonary exercise test (CPET)-assessed exercise capacity, which is a surrogate measure of survival in PAH. We compared 4D flow CMR parameters in PAH with healthy controls, and investigated the association of these parameters with RV remodelling, RV functional and CPET outcomes. METHODS: PAH patients and healthy controls from two centers were prospectively enrolled to undergo on-site cine and 4D flow CMR, and CPET within one week. RV remodelling index was calculated as the ratio of RV to left ventricular (LV) end-diastolic volumes (EDV). Phasic (peak systolic, average systolic, and peak E-wave) LV and RV blood flow KE indexed to EDV (KEI(EDV)) and ventricular LV and RV flow components (direct flow, retained inflow, delayed ejection flow, and residual volume) were calculated. Oxygen uptake (VO(2)), carbon dioxide production (VCO(2)) and minute ventilation (VE) were measured and recorded. RESULTS: 45 PAH patients (46 ± 11 years; 7 M) and 51 healthy subjects (46 ± 14 years; 17 M) with no significant differences in age and gender were analyzed. Compared with healthy controls, PAH had significantly lower median RV direct flow, RV delayed ejection flow, RV peak E-wave KEI(EDV), peak VO(2), and percentage (%) predicted peak VO(2), while significantly higher median RV residual volume and VE/VCO(2) slope. RV direct flow and RV residual volume were significantly associated with RV remodelling, function, peak VO(2), % predicted peak VO(2) and VE/VCO(2) slope (all P < 0.01). Multiple linear regression analyses showed RV direct flow to be an independent marker of RV function, remodelling and exercise capacity. CONCLUSION: In this 4D flow CMR and CPET study, RV direct flow provided incremental value over RVEF for discriminating adverse RV remodelling, impaired exercise capacity, and PAH with intermediate and high risk based on risk score. These data suggest that CMR with 4D flow CMR can provide comprehensive assessment of PAH severity, and may be used to monitor disease progression and therapeutic response. Trial registration number: https://www.clinicaltrials.gov. Unique identifier: NCT03217240. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12968-022-00896-8. |
format | Online Article Text |
id | pubmed-9714144 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-97141442022-12-02 Right ventricular energetic biomarkers from 4D Flow CMR are associated with exertional capacity in pulmonary arterial hypertension Zhao, Xiaodan Leng, Shuang Tan, Ru-San Chai, Ping Yeo, Tee Joo Bryant, Jennifer Ann Teo, Lynette L. S. Fortier, Marielle V. Ruan, Wen Low, Ting Ting Ong, Ching Ching Zhang, Shuo van der Geest, Rob J. Allen, John C. Hughes, Marina Garg, Pankaj Tan, Teng Hong Yip, James W. Tan, Ju Le Zhong, Liang J Cardiovasc Magn Reson Research BACKGROUND: Cardiovascular magnetic resonance (CMR) offers comprehensive right ventricular (RV) evaluation in pulmonary arterial hypertension (PAH). Emerging four-dimensional (4D) flow CMR allows visualization and quantification of intracardiac flow components and calculation of phasic blood kinetic energy (KE) parameters but it is unknown whether these parameters are associated with cardiopulmonary exercise test (CPET)-assessed exercise capacity, which is a surrogate measure of survival in PAH. We compared 4D flow CMR parameters in PAH with healthy controls, and investigated the association of these parameters with RV remodelling, RV functional and CPET outcomes. METHODS: PAH patients and healthy controls from two centers were prospectively enrolled to undergo on-site cine and 4D flow CMR, and CPET within one week. RV remodelling index was calculated as the ratio of RV to left ventricular (LV) end-diastolic volumes (EDV). Phasic (peak systolic, average systolic, and peak E-wave) LV and RV blood flow KE indexed to EDV (KEI(EDV)) and ventricular LV and RV flow components (direct flow, retained inflow, delayed ejection flow, and residual volume) were calculated. Oxygen uptake (VO(2)), carbon dioxide production (VCO(2)) and minute ventilation (VE) were measured and recorded. RESULTS: 45 PAH patients (46 ± 11 years; 7 M) and 51 healthy subjects (46 ± 14 years; 17 M) with no significant differences in age and gender were analyzed. Compared with healthy controls, PAH had significantly lower median RV direct flow, RV delayed ejection flow, RV peak E-wave KEI(EDV), peak VO(2), and percentage (%) predicted peak VO(2), while significantly higher median RV residual volume and VE/VCO(2) slope. RV direct flow and RV residual volume were significantly associated with RV remodelling, function, peak VO(2), % predicted peak VO(2) and VE/VCO(2) slope (all P < 0.01). Multiple linear regression analyses showed RV direct flow to be an independent marker of RV function, remodelling and exercise capacity. CONCLUSION: In this 4D flow CMR and CPET study, RV direct flow provided incremental value over RVEF for discriminating adverse RV remodelling, impaired exercise capacity, and PAH with intermediate and high risk based on risk score. These data suggest that CMR with 4D flow CMR can provide comprehensive assessment of PAH severity, and may be used to monitor disease progression and therapeutic response. Trial registration number: https://www.clinicaltrials.gov. Unique identifier: NCT03217240. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12968-022-00896-8. BioMed Central 2022-12-01 /pmc/articles/PMC9714144/ /pubmed/36451198 http://dx.doi.org/10.1186/s12968-022-00896-8 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Zhao, Xiaodan Leng, Shuang Tan, Ru-San Chai, Ping Yeo, Tee Joo Bryant, Jennifer Ann Teo, Lynette L. S. Fortier, Marielle V. Ruan, Wen Low, Ting Ting Ong, Ching Ching Zhang, Shuo van der Geest, Rob J. Allen, John C. Hughes, Marina Garg, Pankaj Tan, Teng Hong Yip, James W. Tan, Ju Le Zhong, Liang Right ventricular energetic biomarkers from 4D Flow CMR are associated with exertional capacity in pulmonary arterial hypertension |
title | Right ventricular energetic biomarkers from 4D Flow CMR are associated with exertional capacity in pulmonary arterial hypertension |
title_full | Right ventricular energetic biomarkers from 4D Flow CMR are associated with exertional capacity in pulmonary arterial hypertension |
title_fullStr | Right ventricular energetic biomarkers from 4D Flow CMR are associated with exertional capacity in pulmonary arterial hypertension |
title_full_unstemmed | Right ventricular energetic biomarkers from 4D Flow CMR are associated with exertional capacity in pulmonary arterial hypertension |
title_short | Right ventricular energetic biomarkers from 4D Flow CMR are associated with exertional capacity in pulmonary arterial hypertension |
title_sort | right ventricular energetic biomarkers from 4d flow cmr are associated with exertional capacity in pulmonary arterial hypertension |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714144/ https://www.ncbi.nlm.nih.gov/pubmed/36451198 http://dx.doi.org/10.1186/s12968-022-00896-8 |
work_keys_str_mv | AT zhaoxiaodan rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension AT lengshuang rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension AT tanrusan rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension AT chaiping rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension AT yeoteejoo rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension AT bryantjenniferann rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension AT teolynettels rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension AT fortiermariellev rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension AT ruanwen rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension AT lowtingting rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension AT ongchingching rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension AT zhangshuo rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension AT vandergeestrobj rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension AT allenjohnc rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension AT hughesmarina rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension AT gargpankaj rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension AT tantenghong rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension AT yipjamesw rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension AT tanjule rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension AT zhongliang rightventricularenergeticbiomarkersfrom4dflowcmrareassociatedwithexertionalcapacityinpulmonaryarterialhypertension |