Cargando…
SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data
We present SIEVE, a statistical method for the joint inference of somatic variants and cell phylogeny under the finite-sites assumption from single-cell DNA sequencing. SIEVE leverages raw read counts for all nucleotides and corrects the acquisition bias of branch lengths. In our simulations, SIEVE...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714196/ https://www.ncbi.nlm.nih.gov/pubmed/36451239 http://dx.doi.org/10.1186/s13059-022-02813-9 |
_version_ | 1784842170992164864 |
---|---|
author | Kang, Senbai Borgsmüller, Nico Valecha, Monica Kuipers, Jack Alves, Joao M. Prado-López, Sonia Chantada, Débora Beerenwinkel, Niko Posada, David Szczurek, Ewa |
author_facet | Kang, Senbai Borgsmüller, Nico Valecha, Monica Kuipers, Jack Alves, Joao M. Prado-López, Sonia Chantada, Débora Beerenwinkel, Niko Posada, David Szczurek, Ewa |
author_sort | Kang, Senbai |
collection | PubMed |
description | We present SIEVE, a statistical method for the joint inference of somatic variants and cell phylogeny under the finite-sites assumption from single-cell DNA sequencing. SIEVE leverages raw read counts for all nucleotides and corrects the acquisition bias of branch lengths. In our simulations, SIEVE outperforms other methods in phylogenetic reconstruction and variant calling accuracy, especially in the inference of homozygous variants. Applying SIEVE to three datasets, one for triple-negative breast (TNBC), and two for colorectal cancer (CRC), we find that double mutant genotypes are rare in CRC but unexpectedly frequent in the TNBC samples. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-022-02813-9. |
format | Online Article Text |
id | pubmed-9714196 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-97141962022-12-02 SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data Kang, Senbai Borgsmüller, Nico Valecha, Monica Kuipers, Jack Alves, Joao M. Prado-López, Sonia Chantada, Débora Beerenwinkel, Niko Posada, David Szczurek, Ewa Genome Biol Method We present SIEVE, a statistical method for the joint inference of somatic variants and cell phylogeny under the finite-sites assumption from single-cell DNA sequencing. SIEVE leverages raw read counts for all nucleotides and corrects the acquisition bias of branch lengths. In our simulations, SIEVE outperforms other methods in phylogenetic reconstruction and variant calling accuracy, especially in the inference of homozygous variants. Applying SIEVE to three datasets, one for triple-negative breast (TNBC), and two for colorectal cancer (CRC), we find that double mutant genotypes are rare in CRC but unexpectedly frequent in the TNBC samples. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-022-02813-9. BioMed Central 2022-11-30 /pmc/articles/PMC9714196/ /pubmed/36451239 http://dx.doi.org/10.1186/s13059-022-02813-9 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Method Kang, Senbai Borgsmüller, Nico Valecha, Monica Kuipers, Jack Alves, Joao M. Prado-López, Sonia Chantada, Débora Beerenwinkel, Niko Posada, David Szczurek, Ewa SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data |
title | SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data |
title_full | SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data |
title_fullStr | SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data |
title_full_unstemmed | SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data |
title_short | SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data |
title_sort | sieve: joint inference of single-nucleotide variants and cell phylogeny from single-cell dna sequencing data |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714196/ https://www.ncbi.nlm.nih.gov/pubmed/36451239 http://dx.doi.org/10.1186/s13059-022-02813-9 |
work_keys_str_mv | AT kangsenbai sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata AT borgsmullernico sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata AT valechamonica sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata AT kuipersjack sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata AT alvesjoaom sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata AT pradolopezsonia sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata AT chantadadebora sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata AT beerenwinkelniko sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata AT posadadavid sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata AT szczurekewa sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata |