Cargando…

SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data

We present SIEVE, a statistical method for the joint inference of somatic variants and cell phylogeny under the finite-sites assumption from single-cell DNA sequencing. SIEVE leverages raw read counts for all nucleotides and corrects the acquisition bias of branch lengths. In our simulations, SIEVE...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Senbai, Borgsmüller, Nico, Valecha, Monica, Kuipers, Jack, Alves, Joao M., Prado-López, Sonia, Chantada, Débora, Beerenwinkel, Niko, Posada, David, Szczurek, Ewa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714196/
https://www.ncbi.nlm.nih.gov/pubmed/36451239
http://dx.doi.org/10.1186/s13059-022-02813-9
_version_ 1784842170992164864
author Kang, Senbai
Borgsmüller, Nico
Valecha, Monica
Kuipers, Jack
Alves, Joao M.
Prado-López, Sonia
Chantada, Débora
Beerenwinkel, Niko
Posada, David
Szczurek, Ewa
author_facet Kang, Senbai
Borgsmüller, Nico
Valecha, Monica
Kuipers, Jack
Alves, Joao M.
Prado-López, Sonia
Chantada, Débora
Beerenwinkel, Niko
Posada, David
Szczurek, Ewa
author_sort Kang, Senbai
collection PubMed
description We present SIEVE, a statistical method for the joint inference of somatic variants and cell phylogeny under the finite-sites assumption from single-cell DNA sequencing. SIEVE leverages raw read counts for all nucleotides and corrects the acquisition bias of branch lengths. In our simulations, SIEVE outperforms other methods in phylogenetic reconstruction and variant calling accuracy, especially in the inference of homozygous variants. Applying SIEVE to three datasets, one for triple-negative breast (TNBC), and two for colorectal cancer (CRC), we find that double mutant genotypes are rare in CRC but unexpectedly frequent in the TNBC samples. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-022-02813-9.
format Online
Article
Text
id pubmed-9714196
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-97141962022-12-02 SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data Kang, Senbai Borgsmüller, Nico Valecha, Monica Kuipers, Jack Alves, Joao M. Prado-López, Sonia Chantada, Débora Beerenwinkel, Niko Posada, David Szczurek, Ewa Genome Biol Method We present SIEVE, a statistical method for the joint inference of somatic variants and cell phylogeny under the finite-sites assumption from single-cell DNA sequencing. SIEVE leverages raw read counts for all nucleotides and corrects the acquisition bias of branch lengths. In our simulations, SIEVE outperforms other methods in phylogenetic reconstruction and variant calling accuracy, especially in the inference of homozygous variants. Applying SIEVE to three datasets, one for triple-negative breast (TNBC), and two for colorectal cancer (CRC), we find that double mutant genotypes are rare in CRC but unexpectedly frequent in the TNBC samples. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-022-02813-9. BioMed Central 2022-11-30 /pmc/articles/PMC9714196/ /pubmed/36451239 http://dx.doi.org/10.1186/s13059-022-02813-9 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Method
Kang, Senbai
Borgsmüller, Nico
Valecha, Monica
Kuipers, Jack
Alves, Joao M.
Prado-López, Sonia
Chantada, Débora
Beerenwinkel, Niko
Posada, David
Szczurek, Ewa
SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data
title SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data
title_full SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data
title_fullStr SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data
title_full_unstemmed SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data
title_short SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data
title_sort sieve: joint inference of single-nucleotide variants and cell phylogeny from single-cell dna sequencing data
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714196/
https://www.ncbi.nlm.nih.gov/pubmed/36451239
http://dx.doi.org/10.1186/s13059-022-02813-9
work_keys_str_mv AT kangsenbai sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata
AT borgsmullernico sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata
AT valechamonica sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata
AT kuipersjack sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata
AT alvesjoaom sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata
AT pradolopezsonia sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata
AT chantadadebora sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata
AT beerenwinkelniko sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata
AT posadadavid sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata
AT szczurekewa sievejointinferenceofsinglenucleotidevariantsandcellphylogenyfromsinglecelldnasequencingdata