Cargando…
Development and assessment of novel machine learning models to predict medication non-adherence risks in type 2 diabetics
BACKGROUND: Medication adherence is the main determinant of effective management of type 2 diabetes, yet there is no gold standard method available to screen patients with high-risk non-adherence. Developing machine learning models to predict high-risk non-adherence in patients with T2D could optimi...
Autores principales: | Li, Mengting, Lu, Xiangyu, Yang, HengBo, Yuan, Rong, Yang, Yong, Tong, Rongsheng, Wu, Xingwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714465/ https://www.ncbi.nlm.nih.gov/pubmed/36466490 http://dx.doi.org/10.3389/fpubh.2022.1000622 |
Ejemplares similares
-
Determining hypertensive patients’ beliefs towards medication and associations with medication adherence using machine learning methods
por: Aziz, Firdaus, et al.
Publicado: (2020) -
Machine Learning for Predicting the 3-Year Risk of Incident Diabetes in Chinese Adults
por: Wu, Yang, et al.
Publicado: (2021) -
Profiling of patients with type 2 diabetes based on medication adherence data
por: Markovič, Rene, et al.
Publicado: (2023) -
Machine Learning Approaches to Predict Risks of Diabetic Complications and Poor Glycemic Control in Nonadherent Type 2 Diabetes
por: Fan, Yuting, et al.
Publicado: (2021) -
Comparative study on risk prediction model of type 2 diabetes based on machine learning theory: a cross-sectional study
por: Wang, Shu, et al.
Publicado: (2023)