Cargando…
Comprehensive analysis of the NAC transcription factor gene family in Kandelia obovata reveals potential members related to chilling tolerance
BACKGROUND: Kandelia obovata is an important mangrove species extensively distributed in Eastern Asia that is susceptible to low-temperature stress. NAC (NAM, ATAF1/2 and CUC2) domain proteins are transcription factors (TFs) that play various roles in plant growth and development and in the plant re...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714628/ https://www.ncbi.nlm.nih.gov/pubmed/36466244 http://dx.doi.org/10.3389/fpls.2022.1048822 |
_version_ | 1784842271081889792 |
---|---|
author | Du, Zhaokui You, Shixian Yang, Dang Tao, Yutian Zhu, Yunxiao Sun, Wen Chen, Zhengman Li, Junmin |
author_facet | Du, Zhaokui You, Shixian Yang, Dang Tao, Yutian Zhu, Yunxiao Sun, Wen Chen, Zhengman Li, Junmin |
author_sort | Du, Zhaokui |
collection | PubMed |
description | BACKGROUND: Kandelia obovata is an important mangrove species extensively distributed in Eastern Asia that is susceptible to low-temperature stress. NAC (NAM, ATAF1/2 and CUC2) domain proteins are transcription factors (TFs) that play various roles in plant growth and development and in the plant response to environmental stresses. Nevertheless, genome-wide analyses of K. obovata NAC genes (KoNACs) and their responses to chilling stress have rarely been studied. METHODS: The KoNAC gene family was identified and characterized using bioinformatic analysis, the subcellular location of some NAC proteins was confirmed using confocal microscopy analysis, and the KoNACs that responded to chilling stress were screened using RNA-seq and qRT-PCR analysis. RESULTS: A total of 79 KoNACs were identified, and they were unequally distributed across all 18 chromosomes of K. obovata. The KoNAC proteins could be divided into 16 subgroups according to the phylogenetic tree based on NAC family members of Arabidopsis thaliana. The KoNACs exhibited greater synteny with A. thaliana sequences than with Oryza sativa sequences, indicating that KoNACs underwent extensive evolution after the divergence of dicotyledons and monocotyledons. Segmental duplication was the main driving force of the expansions of KoNAC genes. Confocal microscopy analysis verified that the four randomly selected KoNACs localized to the nucleus, indicating the accuracy of the bioinformatic predictions. Tissue expression pattern analysis demonstrated that some KoNAC genes showed tissue-specific expression, suggesting that these KoNACs might be important for plant development and growth. Additionally, the expression levels of 19 KoNACs were significantly (15 positively and 4 negatively) induced by cold treatment, demonstrating that these KoNACs might play important roles during cold stress responses and might be candidate genes for the genetic engineering of K. obovata with enhanced chilling stress tolerance. Coexpression network analysis revealed that 381 coexpressed pairs (between 13 KoNACs and 284 other genes) were significantly correlated. CONCLUSIONS: Seventy-nine KoNACs were identified in K. obovata, nineteen of which displayed chilling-induced expression patterns. These genes may serve as candidates for functional analyses of KoNACs engaged in chilling stress. Our results lay the foundation for evolutionary analyses of KoNACs and their molecular mechanisms in response to environmental stress. |
format | Online Article Text |
id | pubmed-9714628 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-97146282022-12-02 Comprehensive analysis of the NAC transcription factor gene family in Kandelia obovata reveals potential members related to chilling tolerance Du, Zhaokui You, Shixian Yang, Dang Tao, Yutian Zhu, Yunxiao Sun, Wen Chen, Zhengman Li, Junmin Front Plant Sci Plant Science BACKGROUND: Kandelia obovata is an important mangrove species extensively distributed in Eastern Asia that is susceptible to low-temperature stress. NAC (NAM, ATAF1/2 and CUC2) domain proteins are transcription factors (TFs) that play various roles in plant growth and development and in the plant response to environmental stresses. Nevertheless, genome-wide analyses of K. obovata NAC genes (KoNACs) and their responses to chilling stress have rarely been studied. METHODS: The KoNAC gene family was identified and characterized using bioinformatic analysis, the subcellular location of some NAC proteins was confirmed using confocal microscopy analysis, and the KoNACs that responded to chilling stress were screened using RNA-seq and qRT-PCR analysis. RESULTS: A total of 79 KoNACs were identified, and they were unequally distributed across all 18 chromosomes of K. obovata. The KoNAC proteins could be divided into 16 subgroups according to the phylogenetic tree based on NAC family members of Arabidopsis thaliana. The KoNACs exhibited greater synteny with A. thaliana sequences than with Oryza sativa sequences, indicating that KoNACs underwent extensive evolution after the divergence of dicotyledons and monocotyledons. Segmental duplication was the main driving force of the expansions of KoNAC genes. Confocal microscopy analysis verified that the four randomly selected KoNACs localized to the nucleus, indicating the accuracy of the bioinformatic predictions. Tissue expression pattern analysis demonstrated that some KoNAC genes showed tissue-specific expression, suggesting that these KoNACs might be important for plant development and growth. Additionally, the expression levels of 19 KoNACs were significantly (15 positively and 4 negatively) induced by cold treatment, demonstrating that these KoNACs might play important roles during cold stress responses and might be candidate genes for the genetic engineering of K. obovata with enhanced chilling stress tolerance. Coexpression network analysis revealed that 381 coexpressed pairs (between 13 KoNACs and 284 other genes) were significantly correlated. CONCLUSIONS: Seventy-nine KoNACs were identified in K. obovata, nineteen of which displayed chilling-induced expression patterns. These genes may serve as candidates for functional analyses of KoNACs engaged in chilling stress. Our results lay the foundation for evolutionary analyses of KoNACs and their molecular mechanisms in response to environmental stress. Frontiers Media S.A. 2022-11-17 /pmc/articles/PMC9714628/ /pubmed/36466244 http://dx.doi.org/10.3389/fpls.2022.1048822 Text en Copyright © 2022 Du, You, Yang, Tao, Zhu, Sun, Chen and Li https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Du, Zhaokui You, Shixian Yang, Dang Tao, Yutian Zhu, Yunxiao Sun, Wen Chen, Zhengman Li, Junmin Comprehensive analysis of the NAC transcription factor gene family in Kandelia obovata reveals potential members related to chilling tolerance |
title | Comprehensive analysis of the NAC transcription factor gene family in Kandelia obovata reveals potential members related to chilling tolerance |
title_full | Comprehensive analysis of the NAC transcription factor gene family in Kandelia obovata reveals potential members related to chilling tolerance |
title_fullStr | Comprehensive analysis of the NAC transcription factor gene family in Kandelia obovata reveals potential members related to chilling tolerance |
title_full_unstemmed | Comprehensive analysis of the NAC transcription factor gene family in Kandelia obovata reveals potential members related to chilling tolerance |
title_short | Comprehensive analysis of the NAC transcription factor gene family in Kandelia obovata reveals potential members related to chilling tolerance |
title_sort | comprehensive analysis of the nac transcription factor gene family in kandelia obovata reveals potential members related to chilling tolerance |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714628/ https://www.ncbi.nlm.nih.gov/pubmed/36466244 http://dx.doi.org/10.3389/fpls.2022.1048822 |
work_keys_str_mv | AT duzhaokui comprehensiveanalysisofthenactranscriptionfactorgenefamilyinkandeliaobovatarevealspotentialmembersrelatedtochillingtolerance AT youshixian comprehensiveanalysisofthenactranscriptionfactorgenefamilyinkandeliaobovatarevealspotentialmembersrelatedtochillingtolerance AT yangdang comprehensiveanalysisofthenactranscriptionfactorgenefamilyinkandeliaobovatarevealspotentialmembersrelatedtochillingtolerance AT taoyutian comprehensiveanalysisofthenactranscriptionfactorgenefamilyinkandeliaobovatarevealspotentialmembersrelatedtochillingtolerance AT zhuyunxiao comprehensiveanalysisofthenactranscriptionfactorgenefamilyinkandeliaobovatarevealspotentialmembersrelatedtochillingtolerance AT sunwen comprehensiveanalysisofthenactranscriptionfactorgenefamilyinkandeliaobovatarevealspotentialmembersrelatedtochillingtolerance AT chenzhengman comprehensiveanalysisofthenactranscriptionfactorgenefamilyinkandeliaobovatarevealspotentialmembersrelatedtochillingtolerance AT lijunmin comprehensiveanalysisofthenactranscriptionfactorgenefamilyinkandeliaobovatarevealspotentialmembersrelatedtochillingtolerance |