Cargando…
Opportunities and challenges in interpretable deep learning for drug sensitivity prediction of cancer cells
In precision oncology, therapy stratification is done based on the patients’ tumor molecular profile. Modeling and prediction of the drug response for a given tumor molecular type will further improve therapeutic decision-making for cancer patients. Indeed, deep learning methods hold great potential...
Autores principales: | Samal, Bikash Ranjan, Loers, Jens Uwe, Vermeirssen, Vanessa, De Preter, Katleen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714662/ https://www.ncbi.nlm.nih.gov/pubmed/36466148 http://dx.doi.org/10.3389/fbinf.2022.1036963 |
Ejemplares similares
-
SUBATOMIC: a SUbgraph BAsed mulTi-OMIcs clustering framework to analyze integrated multi-edge networks
por: Loers, Jens Uwe, et al.
Publicado: (2022) -
Perspective on the challenges and opportunities of accelerating drug discovery with artificial intelligence
por: Santa Maria, John P., et al.
Publicado: (2023) -
Interpretable deep learning for the prediction of ICU admission likelihood and mortality of COVID-19 patients
por: Nazir, Amril, et al.
Publicado: (2022) -
Editorial: Recent advances in peptide informatics: challenges and opportunities
por: Kumar, Rahul, et al.
Publicado: (2023) -
An interpretable machine learning model for diagnosis of Alzheimer's disease
por: Das, Diptesh, et al.
Publicado: (2019)