Cargando…

A multicategory logit model detecting temporal changes in antimicrobial resistance

Monitoring and investigating temporal trends in antimicrobial data is a high priority for human and animal health authorities. Timely detection of temporal changes in antimicrobial resistance (AMR) can rely not only on monitoring and analyzing the proportion of resistant isolates based on the use of...

Descripción completa

Detalles Bibliográficos
Autores principales: Aerts, Marc, Tzu-yun Teng, Kendy, Jaspers, Stijn, Sanchez, Julio Alvarez
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714861/
https://www.ncbi.nlm.nih.gov/pubmed/36454890
http://dx.doi.org/10.1371/journal.pone.0277866
_version_ 1784842326895493120
author Aerts, Marc
Tzu-yun Teng, Kendy
Jaspers, Stijn
Sanchez, Julio Alvarez
author_facet Aerts, Marc
Tzu-yun Teng, Kendy
Jaspers, Stijn
Sanchez, Julio Alvarez
author_sort Aerts, Marc
collection PubMed
description Monitoring and investigating temporal trends in antimicrobial data is a high priority for human and animal health authorities. Timely detection of temporal changes in antimicrobial resistance (AMR) can rely not only on monitoring and analyzing the proportion of resistant isolates based on the use of a clinical or epidemiological cut-off value, but also on more subtle changes and trends in the full distribution of minimum inhibitory concentration (MIC) values. The nature of the MIC distribution is categorical and ordinal (discrete). In this contribution, we developed a particular family of multicategory logit models for estimating and modelling MIC distributions over time. It allows the detection of a multitude of temporal trends in the full discrete distribution, without any assumption on the underlying continuous distribution for the MIC values. The experimental ranges of the serial dilution experiments may vary across laboratories and over time. The proposed categorical model allows to estimate the MIC distribution over the maximal range of the observed experiments, and allows the observed ranges to vary across labs and over time. The use and performance of the model is illustrated with two datasets on AMR in Salmonella.
format Online
Article
Text
id pubmed-9714861
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-97148612022-12-02 A multicategory logit model detecting temporal changes in antimicrobial resistance Aerts, Marc Tzu-yun Teng, Kendy Jaspers, Stijn Sanchez, Julio Alvarez PLoS One Research Article Monitoring and investigating temporal trends in antimicrobial data is a high priority for human and animal health authorities. Timely detection of temporal changes in antimicrobial resistance (AMR) can rely not only on monitoring and analyzing the proportion of resistant isolates based on the use of a clinical or epidemiological cut-off value, but also on more subtle changes and trends in the full distribution of minimum inhibitory concentration (MIC) values. The nature of the MIC distribution is categorical and ordinal (discrete). In this contribution, we developed a particular family of multicategory logit models for estimating and modelling MIC distributions over time. It allows the detection of a multitude of temporal trends in the full discrete distribution, without any assumption on the underlying continuous distribution for the MIC values. The experimental ranges of the serial dilution experiments may vary across laboratories and over time. The proposed categorical model allows to estimate the MIC distribution over the maximal range of the observed experiments, and allows the observed ranges to vary across labs and over time. The use and performance of the model is illustrated with two datasets on AMR in Salmonella. Public Library of Science 2022-12-01 /pmc/articles/PMC9714861/ /pubmed/36454890 http://dx.doi.org/10.1371/journal.pone.0277866 Text en © 2022 Aerts et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Aerts, Marc
Tzu-yun Teng, Kendy
Jaspers, Stijn
Sanchez, Julio Alvarez
A multicategory logit model detecting temporal changes in antimicrobial resistance
title A multicategory logit model detecting temporal changes in antimicrobial resistance
title_full A multicategory logit model detecting temporal changes in antimicrobial resistance
title_fullStr A multicategory logit model detecting temporal changes in antimicrobial resistance
title_full_unstemmed A multicategory logit model detecting temporal changes in antimicrobial resistance
title_short A multicategory logit model detecting temporal changes in antimicrobial resistance
title_sort multicategory logit model detecting temporal changes in antimicrobial resistance
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714861/
https://www.ncbi.nlm.nih.gov/pubmed/36454890
http://dx.doi.org/10.1371/journal.pone.0277866
work_keys_str_mv AT aertsmarc amulticategorylogitmodeldetectingtemporalchangesinantimicrobialresistance
AT tzuyuntengkendy amulticategorylogitmodeldetectingtemporalchangesinantimicrobialresistance
AT jaspersstijn amulticategorylogitmodeldetectingtemporalchangesinantimicrobialresistance
AT sanchezjulioalvarez amulticategorylogitmodeldetectingtemporalchangesinantimicrobialresistance
AT aertsmarc multicategorylogitmodeldetectingtemporalchangesinantimicrobialresistance
AT tzuyuntengkendy multicategorylogitmodeldetectingtemporalchangesinantimicrobialresistance
AT jaspersstijn multicategorylogitmodeldetectingtemporalchangesinantimicrobialresistance
AT sanchezjulioalvarez multicategorylogitmodeldetectingtemporalchangesinantimicrobialresistance