Cargando…
Study on exercise muscle fatigue based on sEMG and ECG data fusion and temporal convolutional network
BACKGROUND: Muscle fatigue is a crucial indicator to determine whether training is in place and to protect trainers. PURPOSE: To make full use of morphological information of surface EMG and ECG signals in the time domain, a new idea and method for the fatigue assessment of exercise muscles based on...
Autores principales: | Mu, Dinghong, Li, Fenglei, Yu, Linxinying, Du, Chunlin, Ge, Linhua, Sun, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714888/ https://www.ncbi.nlm.nih.gov/pubmed/36454887 http://dx.doi.org/10.1371/journal.pone.0276921 |
Ejemplares similares
-
Research on exercise fatigue estimation method of Pilates rehabilitation based on ECG and sEMG feature fusion
por: Li, Dujuan, et al.
Publicado: (2022) -
A Wireless sEMG Recording System and Its Application to Muscle Fatigue Detection
por: Chang, Kang-Ming, et al.
Publicado: (2012) -
Is the Use of a Low-Cost sEMG Sensor Valid to Measure Muscle Fatigue?
por: del Toro, Sergio Fuentes, et al.
Publicado: (2019) -
Novel Feature Modelling the Prediction and Detection of sEMG Muscle Fatigue towards an Automated Wearable System
por: Al-Mulla, Mohamed R., et al.
Publicado: (2010) -
Elements Influencing sEMG-Based Gesture Decoding: Muscle Fatigue, Forearm Angle and Acquisition Time
por: Qing, Zengyu, et al.
Publicado: (2021)