Cargando…
Hi-LASSO: High-performance python and apache spark packages for feature selection with high-dimensional data
High-dimensional LASSO (Hi-LASSO) is a powerful feature selection tool for high-dimensional data. Our previous study showed that Hi-LASSO outperformed the other state-of-the-art LASSO methods. However, the substantial cost of bootstrapping and the lack of experiments for a parametric statistical tes...
Autores principales: | Jo, Jongkwon, Jung, Seungha, Park, Joongyang, Kim, Youngsoon, Kang, Mingon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714948/ https://www.ncbi.nlm.nih.gov/pubmed/36455001 http://dx.doi.org/10.1371/journal.pone.0278570 |
Ejemplares similares
-
Frank Kane's Taming big data with Apache Spark and Python: real-world examples to help you analyze large datasets with Apache Spark
por: Kane, Frank
Publicado: (2017) -
High performance Spark: best practices for scaling and optimizing Apache Spark
por: Karau, Holden, et al.
Publicado: (2017) -
Big data processing with Apache Spark: efficiently tackle large datasets and big data analysis with Spark and Python
por: Franco Galeano, Manuel Ignacio
Publicado: (2018) -
PySpark cookbook: over 60 recipes for implementing big data processing and analytics using Apache Spark and Python
por: Lee, Denny, et al.
Publicado: (2018) -
Apache Spark 2 for beginners: develop large-scale distributed data processing applications using Spark 2 in Scala and Python
por: Thottuvaikkatumana, Rajanarayanan
Publicado: (2016)