Cargando…
OpenFL: the open federated learning library
Objective. Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL) projects without sharing sensitive data, such as patient records, financial data, or classified secrets. Approach. Open federated learning (OpenFL)...
Autores principales: | Foley, Patrick, Sheller, Micah J, Edwards, Brandon, Pati, Sarthak, Riviera, Walter, Sharma, Mansi, Narayana Moorthy, Prakash, Wang, Shih-han, Martin, Jason, Mirhaji, Parsa, Shah, Prashant, Bakas, Spyridon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOP Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715347/ https://www.ncbi.nlm.nih.gov/pubmed/36198326 http://dx.doi.org/10.1088/1361-6560/ac97d9 |
Ejemplares similares
-
Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data
por: Sheller, Micah J., et al.
Publicado: (2020) -
The future of digital health with federated learning
por: Rieke, Nicola, et al.
Publicado: (2020) -
FL-PMI: Federated Learning-Based Person Movement Identification through Wearable Devices in Smart Healthcare Systems
por: Arikumar, K. S., et al.
Publicado: (2022) -
PLDP-FL: Federated Learning with Personalized Local Differential Privacy
por: Shen, Xiaoying, et al.
Publicado: (2023) -
MERGE: A model for multi-input biomedical federated learning
por: Casella, Bruno, et al.
Publicado: (2023)