Cargando…

Green-Resilient Supplier Selection and Order Allocation Under Disruption by Utilizing Conditional Value at Risk: Mixed Response Strategies

Two important decisions in supply chains and logistics systems design are the supplier selection and order allocation (SS&OA) problem and the vehicle routing problem (VRP). Supply disruption may reduce the capacity of suppliers, and the transportation network disruption may decrease the number o...

Descripción completa

Detalles Bibliográficos
Autores principales: Taghavi, Seyed Mojtaba, Ghezavati, Vahidreza, Bidhandi, Hadi Mohammadi, Al-e-Hashem, Seyed Mohammad Javad Mirzapour
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715419/
http://dx.doi.org/10.1007/s41660-022-00298-4
_version_ 1784842445497827328
author Taghavi, Seyed Mojtaba
Ghezavati, Vahidreza
Bidhandi, Hadi Mohammadi
Al-e-Hashem, Seyed Mohammad Javad Mirzapour
author_facet Taghavi, Seyed Mojtaba
Ghezavati, Vahidreza
Bidhandi, Hadi Mohammadi
Al-e-Hashem, Seyed Mohammad Javad Mirzapour
author_sort Taghavi, Seyed Mojtaba
collection PubMed
description Two important decisions in supply chains and logistics systems design are the supplier selection and order allocation (SS&OA) problem and the vehicle routing problem (VRP). Supply disruption may reduce the capacity of suppliers, and the transportation network disruption may decrease the number of vehicles in the fleet and disrupt some routes. Also, increasing environmental regulations and environmental awareness makes companies pay more attention to green supply chain management (GSCM). In this paper, we integrate green and resilient supplier selection and order allocation decisions with vehicle routing decisions under disruption. We present a multiproduct two-stage risk-averse mixed-integer stochastic linear programming for the green and resilient supplier selection and order allocation integrated with vehicle routing (G&RSS&OA-V) problem. We consider resilient strategies before disruption, including multiple sourcing, supplier fortification, prepositioned inventory at the protected supplier, and contract with third-party logistics providers (3PLs). The objective function is to minimize the total mean-risk cost and the cost of greenhouse emissions. We use conditional value at risk (CVaR) as a risk measure to control the risk of worst-case cost. The most significant decisions of this model are the strategic decisions of determining the optimal suppliers and the operational decisions of vehicles routing under disruption simultaneously. Other decisions include determining which suppliers should be fortified, the amount to be transported to the hybrid manufacturing-distribution (HMD) center through the supplier or prepositioned emergency inventory, and the amount of lost sales. In order to validate the proposed model and its features, several numerical examples along with sensitivity analysis are performed by GAMS software, which shows the efficiency and application of the developed model, and some managerial insights are reported. The results of the sensitivity analysis show that as α increases from 0.1 to 0.9, the mean-CVaR objective function cost increases to 13.2%. As λ increases from 0.1 to 0.9, the mean-CVaR objective function cost increases to 35.6%. The increase of these two risk factors makes the proposed model more risk-averse. As the expected shortage cost increases by 150%, the mean-CVaR objective function cost increases to 36% while the amount of expected shortage decreases by 56%.
format Online
Article
Text
id pubmed-9715419
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer Nature Singapore
record_format MEDLINE/PubMed
spelling pubmed-97154192022-12-02 Green-Resilient Supplier Selection and Order Allocation Under Disruption by Utilizing Conditional Value at Risk: Mixed Response Strategies Taghavi, Seyed Mojtaba Ghezavati, Vahidreza Bidhandi, Hadi Mohammadi Al-e-Hashem, Seyed Mohammad Javad Mirzapour Process Integr Optim Sustain Original Research Paper Two important decisions in supply chains and logistics systems design are the supplier selection and order allocation (SS&OA) problem and the vehicle routing problem (VRP). Supply disruption may reduce the capacity of suppliers, and the transportation network disruption may decrease the number of vehicles in the fleet and disrupt some routes. Also, increasing environmental regulations and environmental awareness makes companies pay more attention to green supply chain management (GSCM). In this paper, we integrate green and resilient supplier selection and order allocation decisions with vehicle routing decisions under disruption. We present a multiproduct two-stage risk-averse mixed-integer stochastic linear programming for the green and resilient supplier selection and order allocation integrated with vehicle routing (G&RSS&OA-V) problem. We consider resilient strategies before disruption, including multiple sourcing, supplier fortification, prepositioned inventory at the protected supplier, and contract with third-party logistics providers (3PLs). The objective function is to minimize the total mean-risk cost and the cost of greenhouse emissions. We use conditional value at risk (CVaR) as a risk measure to control the risk of worst-case cost. The most significant decisions of this model are the strategic decisions of determining the optimal suppliers and the operational decisions of vehicles routing under disruption simultaneously. Other decisions include determining which suppliers should be fortified, the amount to be transported to the hybrid manufacturing-distribution (HMD) center through the supplier or prepositioned emergency inventory, and the amount of lost sales. In order to validate the proposed model and its features, several numerical examples along with sensitivity analysis are performed by GAMS software, which shows the efficiency and application of the developed model, and some managerial insights are reported. The results of the sensitivity analysis show that as α increases from 0.1 to 0.9, the mean-CVaR objective function cost increases to 13.2%. As λ increases from 0.1 to 0.9, the mean-CVaR objective function cost increases to 35.6%. The increase of these two risk factors makes the proposed model more risk-averse. As the expected shortage cost increases by 150%, the mean-CVaR objective function cost increases to 36% while the amount of expected shortage decreases by 56%. Springer Nature Singapore 2022-12-02 2023 /pmc/articles/PMC9715419/ http://dx.doi.org/10.1007/s41660-022-00298-4 Text en © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Original Research Paper
Taghavi, Seyed Mojtaba
Ghezavati, Vahidreza
Bidhandi, Hadi Mohammadi
Al-e-Hashem, Seyed Mohammad Javad Mirzapour
Green-Resilient Supplier Selection and Order Allocation Under Disruption by Utilizing Conditional Value at Risk: Mixed Response Strategies
title Green-Resilient Supplier Selection and Order Allocation Under Disruption by Utilizing Conditional Value at Risk: Mixed Response Strategies
title_full Green-Resilient Supplier Selection and Order Allocation Under Disruption by Utilizing Conditional Value at Risk: Mixed Response Strategies
title_fullStr Green-Resilient Supplier Selection and Order Allocation Under Disruption by Utilizing Conditional Value at Risk: Mixed Response Strategies
title_full_unstemmed Green-Resilient Supplier Selection and Order Allocation Under Disruption by Utilizing Conditional Value at Risk: Mixed Response Strategies
title_short Green-Resilient Supplier Selection and Order Allocation Under Disruption by Utilizing Conditional Value at Risk: Mixed Response Strategies
title_sort green-resilient supplier selection and order allocation under disruption by utilizing conditional value at risk: mixed response strategies
topic Original Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715419/
http://dx.doi.org/10.1007/s41660-022-00298-4
work_keys_str_mv AT taghaviseyedmojtaba greenresilientsupplierselectionandorderallocationunderdisruptionbyutilizingconditionalvalueatriskmixedresponsestrategies
AT ghezavativahidreza greenresilientsupplierselectionandorderallocationunderdisruptionbyutilizingconditionalvalueatriskmixedresponsestrategies
AT bidhandihadimohammadi greenresilientsupplierselectionandorderallocationunderdisruptionbyutilizingconditionalvalueatriskmixedresponsestrategies
AT alehashemseyedmohammadjavadmirzapour greenresilientsupplierselectionandorderallocationunderdisruptionbyutilizingconditionalvalueatriskmixedresponsestrategies